While multi-robot cells are being used more often in industry, the problem of work-piece position optimization is still solved using heuristics and the human experience and, in most industrial cases, even a feasible solution takes a considerable amount of trials to be found. Indeed, the optimization of a generic performance index along a path is complex, due to the dimension of the feasible-configuration space. This work faces this challenge by proposing an iterative layered-optimization method that integrates a Whale Optimization and an Ant Colony Optimization algorithm, the method allows the optimization of a user-defined objective function, along a working path, in order to achieve a quasi-optimal, collision free solution in the feasible-configuration space.
Towards optimal task positioning in multi-robot cells, using nested meta-heuristic swarm algorithms
Beschi, M;Pedrocchi, N;
2021-01-01
Abstract
While multi-robot cells are being used more often in industry, the problem of work-piece position optimization is still solved using heuristics and the human experience and, in most industrial cases, even a feasible solution takes a considerable amount of trials to be found. Indeed, the optimization of a generic performance index along a path is complex, due to the dimension of the feasible-configuration space. This work faces this challenge by proposing an iterative layered-optimization method that integrates a Whale Optimization and an Ant Colony Optimization algorithm, the method allows the optimization of a user-defined objective function, along a working path, in order to achieve a quasi-optimal, collision free solution in the feasible-configuration space.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.