Clustering of shots is frequently used for accessing video data and enabling quick grasping of the associated content. In this work we first group video shots by a classic hierarchical algorithm, where shot content is described by a codebook of visual words and different codebooks are compared by a suitable measure of distortion. To deal with the high number of levels in a hierarchical tree, a novel procedure of Leading-Cluster-Analysis is then proposed to extract a reduced set of hierarchically arranged previews. The depth of the obtained structure is driven both from the nature of the visual content information, and by the user needs, who can navigate the obtained video previews at various levels of representation. The effectiveness of the proposed method is demonstrated by extensive tests and comparisons carried out on a large collection of video data. of digital videos has not been accompanied by a parallel increase in its accessibility. In this context, video abstraction techniques may represent a key components of a practical video management system: indeed a condensed video may be effective for a quick browsing or retrieval tasks. A commonly accepted type of abstract for generic videos does not exist yet, and the solutions investigated so far depend usually on the nature and the genre of video data.

Hierarchical Structuring of Video Previews by Leading-Cluster-Analysis

BENINI, Sergio;MIGLIORATI, Pierangelo;LEONARDI, Riccardo
2010-01-01

Abstract

Clustering of shots is frequently used for accessing video data and enabling quick grasping of the associated content. In this work we first group video shots by a classic hierarchical algorithm, where shot content is described by a codebook of visual words and different codebooks are compared by a suitable measure of distortion. To deal with the high number of levels in a hierarchical tree, a novel procedure of Leading-Cluster-Analysis is then proposed to extract a reduced set of hierarchically arranged previews. The depth of the obtained structure is driven both from the nature of the visual content information, and by the user needs, who can navigate the obtained video previews at various levels of representation. The effectiveness of the proposed method is demonstrated by extensive tests and comparisons carried out on a large collection of video data. of digital videos has not been accompanied by a parallel increase in its accessibility. In this context, video abstraction techniques may represent a key components of a practical video management system: indeed a condensed video may be effective for a quick browsing or retrieval tasks. A commonly accepted type of abstract for generic videos does not exist yet, and the solutions investigated so far depend usually on the nature and the genre of video data.
File in questo prodotto:
File Dimensione Formato  
SIVIP10-HierarchicalstructuringofvideopreviewsbyLeadingClusterAnalysis.pdf

accesso aperto

Descrizione: BML_SIViP-2010_full-text
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 752.66 kB
Formato Adobe PDF
752.66 kB Adobe PDF Visualizza/Apri
BML-10.pdf

accesso aperto

Descrizione: BML_SIViP-2010_full
Tipologia: Full Text
Licenza: Creative commons
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/8109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact