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Abstract Clustering of shots is frequently used for access-
ing video data and enabling quick grasping of the associated
content. In this work we first group video shots by a classic
hierarchical algorithm, where shot content is described by a
codebook of visual words and different codebooks are com-
pared by a suitable measure of distortion. To deal with the
high number of levels in a hierarchical tree, a novel proce-
dure of Leading-Cluster-Analysis is then proposed to extract
a reduced set of hierarchically arranged previews. The depth
of the obtained structure is driven both from the nature of
the visual content information, and by the user needs, who
can navigate the obtained video previews at various levels of
representation. The effectiveness of the proposed method is
demonstrated by extensive tests and comparisons carried out
on a large collection of video data.

Keywords Hierarchical video summarization ·
Vector quantization · Leading-Cluster-Analysis

1 Introduction

With the proliferation of digital broadcasting, internet web-
sites, private recording of home video, a large amount of
audio-visual information is becoming available to the final
users. However, this massive explosion in the availability
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of digital videos has not been accompanied by a parallel
increase in its accessibility.

In this context, video abstraction techniques may represent
a key components of a practical video management system:
indeed a condensed video may be effective for a quick brows-
ing or retrieval tasks. A commonly accepted type of abstract
for generic videos does not exist yet, and the solutions inves-
tigated so far depend usually on the nature and the genre of
video data.

For unscripted content videos, such as sports and home-
videos, events occurs spontaneously and not according to
a given script. Previous work on video abstraction for this
type of content mainly focused on the extraction of high-
lights [1]. For scripted videos instead, e.g., movies, dra-
mas, news and cartoons, basically two families of abstraction
methods have been adopted so far, namely video summari-
zation and video skimming [2]. The first one, also known
as static video summarization, is a process that selects a
set of salient key-frames to represent the video-content in
a compact form, often called preview. On the other hand,
video skimming, also known as dynamic video summari-
zation, tries to condense the original video in the form of
a shorter video clip [3]. Recently also the problem of the
summarization of raw and unedited video material (called
rushes) is attracting more and more research interests
[4–6,50].

For most of summarization techniques, the decomposi-
tion into shots (i.e., the basic video segments filmed in one
single camera take), and the following key-frame extrac-
tion from shots, are commonly considered as the prior steps
for the automatic generation of summaries. However, if we
consider that there are usually several hundreds of shots
for an hour long video, shot decomposition often leads to
a huge amounts of key-frames, thus making the browsing
impractical.
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Fig. 1 Hierarchical decomposition for scripted video-content

Significant research efforts have been therefore directed
towards effective clustering of visually similar shots into
structures called clusters (or groups) (see Fig. 1).

Several works have shown how an accurate grouping of
similar shots can for example facilitate the access to
video-content [7], and can help in understanding associated
high-level semantics (as in [8] and [9]). According to the
decomposition shown in Fig. 1, groups of shots can be con-
sidered as intermediate entities between physical shots and
semantic scenes, and can serve as a bridge to reduce the gap
between the two representation levels. Building upon shot
clusters, a method to produce effective video summaries is
easily developed. Moreover, a number of other tasks such as
video retrieval and semantic annotation, can largely benefit
from accurate clustering of similar shots.

2 Paper aims and organization

The main objective of this work is to propose a novel solution
for shot clustering used for the generation of a hierarchical
video summary (preview). As we discuss in Sect. 3.1, the
success of a clustering method is based on an effective com-
bination of the following factors:

– the chosen clustering algorithm;
– the low-level feature to represent the visual-content;
– the employed similarity measure between shots and clus-

ters of shots.

Concerning the clustering method, a classic Hierarchical
Agglomerative Clustering (HAC) based on average-linkage
criterion has been adopted, and it has been tailored to the
specific case of visual data. In unsupervised clustering, when
we explore a data set with unknown properties, a recurring
problem is that of deciding how many clusters are present.
Traditional approaches usually impose an a priori criterion
to stop the clustering, for example by setting in advance the
final number of clusters, or by imposing a minimum-variance

partition. Anyway, these global criteria often fail in preserv-
ing the visual coherence of clusters.

To automatically determine the number of natural clusters,
in this work we propose a criterion [10] which is local to each
growing cluster, thus avoiding the drawbacks of global crite-
ria. This method, which we name Leading-Cluster-Analysis
(LCA), identifies the merging steps in which the visual-con-
tent of each cluster changes significantly, thus determining a
likely change also in the associated semantics.

In addition to this, LCA provides also a natural hierarchi-
cal solution to the issue of summarization, by organizing the
video in a tree structure, where the number of layers and the
number of clusters in each layer depend only on the video-
content, and are not a priori assigned.

The most important achievement of the proposed method
is the solution to the problem of the high number of levels
usually provided by a classic hierarchical method. By LCA
a reduced set of levels is extracted from the hierarchy, and
a video preview ready to be used in a browsing solution is
built, as shown in [50].

Since semantic clustering is often not applicable, for exam-
ple in case of not annotated content (e.g. rushes), one feasi-
ble way to represent and group visual-content is according
to low-level video properties. Concerning the low-level fea-
tures used, and the metric adopted to estimate shot and clus-
ter similarities, a variety of methods exists (see Sect. 3.1).
However, in most cases video shots have been described by
means of color information, often simply relying on histo-
grams or on color spatial distribution. In this work instead,
we describe each shot in terms of a dictionary of visual words
obtained from a Tree-Structured Vector Quantization (TSVQ)
process. Traditionally adopted for coding purposes [11], Vec-
tor Quantization has been successfully proposed in [12] also
as an effective low-level feature for video indexing, suitable
to overcome some limitations of color layout or color histo-
gram. A related similarity measure has also been introduced
with the goal to assess at best the visual coherence of each
cluster.

The rest of the paper is organized as follows. In Sect. 3
previous work on shot clustering and video summarization
is discussed. The hierarchical algorithm and its related den-
drogram representation are presented in Sect. 4. Section 5
introduces the Leading-Cluster-Analysis and the method for
the generation of the hierarchical video preview. The extrac-
tion of the low-level feature based on Tree-Structured Vector
Quantization is described in Sect. 6. Experiments and perfor-
mance evaluation are provided in Sect. 7, while conclusions
are drawn in Sect. 8.

3 Related work on video summarization

A significant number of applications, ranging from seman-
tic annotation to video summarization and skimming, can
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largely benefit from effective clustering of similar shots. In
this section some video summarization methods adopting an
initial clustering of shots are discussed.

3.1 Shot-based clustering

Data clustering methods are generally classified into super-
vised and unsupervised ones (the reader can refer to [13] for
an accurate overview on data clustering).

Supervised methods for shot clustering have been pro-
posed for example in [14] and [15]. In these cases, basic
low-level features, such as dominant color and motion inten-
sity, are extracted from selected key-frames, and the training
data are labeled by hand. Then Hidden Markov Models and
Neural Networks are used for statistical training and classi-
fication.

In general, supervised methods are more accurate and effi-
cient than the unsupervised ones, but the work of human
labeling requires a lot of time. Moreover, these classifiers
can only be applied on the same types of video, and differ-
ent classifiers should be trained for different video sets. To
overcome these problems, clustering methods based on unsu-
pervised learning have been proposed. They can be applied
directly on unknown data without any hand-labeling and, in
case of video data, represent a universal solution for different
sets of video programmes.

Among unsupervised methods two main categories can
be distinguished, namely, partitional and hierarchical [13].
In partitional algorithms the final grouping is obtained by
partitioning the entire data set into a certain number of clus-
ters. Hierarchical methods instead, starting from a data set,
produce a hierarchy of nested clusters at different granularity.

A well known method of partitional clustering is the
k-means algorithm, which is popular due to its simple imple-
mentation and low computational complexity. The major
drawback of such an approach is that the number of the k
final clusters must be set a priori, or automatically estimated,
often without enough knowledge of the data set.

For video data, many variants of the k-means algorithm
have been proposed in literature. Hanjalic and Zhang [16]
introduced a partitional clustering of all video frames by uti-
lizing the YUV histogram as feature vector. Initially, frames
are assigned to a random partition, and then they are reas-
signed to the k clusters on the basis of the similarity between
the frame and the cluster centroid, until a predefined conver-
gence criterion is met. Each cluster is finally represented in
the video summary by a key-frame. The proposed algorithm
is basically a k-means clustering, where the optimal number
of clusters is automatically determined by cluster validity
analysis. The adopted objective function (the mean square
error) is more effective in the case of isolated and compact
clusters, which is not often the case for the feature vectors
extracted from videos. The main problem of this kind of

algorithms is that they are highly sensitive to the initial par-
tition, so that a local minimum can be likely reached. For
these reasons hierarchical algorithms are considered more
versatile and have recently captured much research atten-
tion. By allowing a representation of data on different levels
of abstraction, hierarchical solutions are considered interest-
ing particularly for video data.

Hierarchical algorithms can be further distinguished into
agglomerative and divisive. Specifically, agglomerative algo-
rithms initially assign each item to a different cluster, and
iteratively merge the two most similar clusters until a suit-
able stopping criterion is met (as in [17]), or only one cluster
is left. On the other hand, divisive approaches start by consid-
ering all data in a single cluster, and then proceed by means
of iterative splitting until the stopping condition is reached.

In [9] a probabilistic hierarchical agglomerative clustering
algorithm has been used to discover the structure in home-
videos. In particular, a statistical model of visual similarity
is considered (using Gaussian Mixture Models), taking into
account also the duration and the video segment adjacency.

In general, the key point of agglomerative methods is the
criterion adopted to measure the distance between clusters
[18]. The most used ones are the complete-linkage, single-
linkage and average-linkage [13].

A hierarchical agglomerative clustering based on a com-
plete-linkage, i.e., in which the distance between clusters
is given by the maximum distance between all couples of
items belonging to the clusters, has been adopted for exam-
ple in [19]. In this work the authors obtain interesting results
clustering shots according to a similarity measure based on
color and pixel correlation between different key-frames. The
described time-constrained method takes also into account
the temporal vicinity of shots, and allows the further appli-
cation of the Scene Transition Graph framework to auto-
matically segment the video into story units. A similar
time-constrained approach is applied in [20], where Principal
Component Analysis is adopted to reduce the dimensionality
of color and motion features extracted from video frames.

In general a complete-linkage algorithm produces numer-
ous tightly bound and compact clusters. By contrast, a
single-linkage algorithm, in which the distance between clus-
ters is given by the minimum distance between all couples,
suffers from a chaining effect: it has a tendency to produce
less clusters, that are straggly or elongated. Both methods
are therefore sensitive to outliers, since the distance measure
relies on minimum or maximum operations. To overcome
these problems more robust average-linkage approaches have
been introduced, where the distance between two clusters is
defined as the average distance between elements in the two
groups.

An interesting example of hierarchical agglomerative clus-
tering using a variant of the average-linkage criterion is the
semi-automatic approach proposed in [21], whose final aim
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is to extract a hierarchical summary. In this work similarity
between shots is defined on arbitrarily chosen key-frames
in terms of HSV color histogram and texture features. Then
groups of temporally related shots are detected by measuring
shot correlation between adjacent shots. Obtained clusters
are manually annotated by labels from a set of ontologies,
and annotations are automatically propagated to shots and
frames. The similarity between two clusters is here defined as
the average similarity between shots in one group and the cor-
respondingly most similar shots in the other group, using both
the above visual features and the semantic labeling. Finally
the hierarchical summary is created on four predefined levels
(that are video, scene, group and shot). The described sys-
tem facilitates browsing and retrieval of the desired piece of
video, with the drawbacks of the need for manual annotation
and the rigidity of the four-level hierarchy.

The extraction of hierarchical summaries (first proposed
in [22]) is performed in more stages even in [23]. In this
algorithm each shot is characterized by its α-trimmed aver-
age luminance histogram, and each frame is characterized
by the normalized distance between its histogram and that of
the shot which it belongs to. Then fuzzy k-means clustering
is performed on the frames in each shot with increasing k,
until a decreasing value of cluster validity is detected. For
each cluster, the most representative frame is selected as a
key-frame, based either on maximal proximity to the cluster
centroid or on the maximal fuzzy cluster membership. The
same merging approach is also used on adjacent clusters to
extract the hierarchy of summaries.

The main innovation of the approach presented by
Koprinska et al. in [24] is the ability to form a hierarchy
where the number of layers and the number of clusters in
each layer depend on the video-content and are not set in
advance. In this case clustering is achieved by the Growing
Cell Structures neural algorithm, and key-frames are selected
according to the color histogram of DC-images of MPEG
I-frames. Although the method has been tested on a limited
set of sequences and requires the user to set numerous param-
eters, it captures well salient video-content, while offering a
flexible method for hierarchical browsing.

An attempt to combine the advantages of hierarchical
algorithms with the lower complexity of partitional methods,
is made by Ngo et al. in [25]. It adopts a two-level hierar-
chical approach where the k-means algorithm is employed
to cluster shots at each level of the hierarchy independently.
Color features (YUV histogram on DC-images) are adopted
at the top level, while motion features (i.e., the tensor histo-
gram) are used at the bottom level. The experimental results
demonstrated that such an approach is more suitable for shot
retrieval rather than for video summarization, since it suffers
from the same limitations described for [16].

A completely different class of shot clustering algorithms
[26,27] adopts short-term memory-based models. In [26],

the detection of local minima in the continuous measure of
coherence based on RGB color histogram, allows robust and
flexible segmentation of the video into scenes. Then a one-
pass on-the-fly shot clustering algorithm is derived. A similar
procedure has been employed in [28], with the goal of high-
level movie segmentation. The dissimilarity between shots is
estimated by the correlation between DC key-frame images
by block matching. Finally this method groups together con-
tiguous and interconnected shots sharing a common seman-
tic thread into Logical Story Units by building upon temporal
relations between similar shots.

Lately spectral clustering demonstrated to be effective in
capturing perceptual features and grouping similar shots [29,
30]. In spite of its name, spectral clustering realizes group-
ing by partitioning data graphs and it constitutes a favorable
choice for visual data, since it works well with high-dimen-
sional features and when distributions are not necessarily
convex or Gaussian.

3.2 Other work on video summarization

Apart from shot clustering, alternative solutions to the prob-
lem of static summarization are typically based on a two-
step approach: first identifying video shots from the video
sequence and then, without grouping them, directly selecting
key-frames according to different criteria. Most key-frames
extraction techniques are based only on visual-information,
except some approaches (e.g., [31]) where also motion is
considered. In other approaches like [32] and [33], audio, lin-
guistic information, and MPEG-7 metadata have been also
considered in order to build the related summaries.

Some other related works apply sophisticated mathemat-
ical tools to the summarization process. For instance in [34]
and [35] video-content is represented by a curve in a high-
dimensional feature space, and key-frames are selected in
relation to the high curvature points. Sundaram et al. instead,
in [36], use the Kolmogorov complexity as a measure of
the video shot complexity, and compute the video summary
according to both video shot complexity and some additional
semantic information under a constrained optimization for-
mulation.

As an interesting evolution of their previous work pro-
posed in [19], Yeung and Yeo in [37] organize the most
representative images of a story unit into a poster, i.e., a
single regular-sized image following a predefined visual lay-
out. This approach has been adopted by other authors too
(see [33,38,39]), who aim to arrange semantically relevant
key-frames in a bi-dimensional plane according to different
criteria such as temporal time-stamps.

However, most of these poster methods use only low-level
features and do not consider the semantic content, and also
the time length of the summary and the number of the key-
frames to be displayed can not be changed freely. Moreover,
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since the generated summary is not semantically structured,
users still have to view the whole video to search for a specific
scene. As an attempt to overcome some of these drawbacks,
Uchihashi et al. in [17] present a method of making video
posters in which the key-frame sizes are changed according
to an extracted importance measure.

Since regular key-frames cannot effectively represent the
underlying video dynamics, researchers have also looked
for an alternative way to display the shot content using a
synthesized panoramic image called mosaic. Following this
approach, various types of mosaics such as static background
mosaics and synopsis mosaics can be found in [40] and
[41], while an interchangeable use of regular key-frames and
mosaic images has been investigated in [42].

Finally, other schemes based on sophisticated temporal
frame sampling [43], fuzzy classification [44] and singular
value decomposition [45] have been also studied with encour-
aging results.

In the next sections, the proposed method of hierarchical
shot clustering is described in detail.

4 Hierarchical agglomerative clustering

The choice of a Hierarchical Agglomerative Clustering
(HAC) as a basis for our further analysis is here motivated.
An unsupervised method was preferred to overcome the lim-
itations imposed by a manual labeling process. Hierarchical
clustering was chosen since it allows a natural representa-
tion of data at different levels of abstraction. Finally, the
agglomerative average-linkage approach was adopted for its
intrinsic robustness to outliers, as discussed in Sect. 3.1.

In general a hierarchical organisation supports fast under-
standing since it splits its content into smaller subsets on
different levels and emphasises the relationships between dif-
ferent sets. For example, an ideal arrangement of news vid-
eos as in Fig. 2, with each node labelled with one semantic
category, would enable a fast access and a complete under-
standing of the video structure.

Unfortunately semantic clustering is not always applica-
ble to videos, especially when this content is un-annotated.
Therefore one feasible approach when dealing with such
material, is to hierarchically arrange content by performing
a visual clustering on a set of key-frames extracted from the
data.

Even if the grouping of similar content is based on visual
similarity rather than semantics, the proposed arrangement
helps in reducing the semantic gap between low-level fea-
tures and high-level concepts familiar to the user. In fact, if
the video has been produced according to a script, the director
often conveys a persistent semantics through the association
with an implicit temporal continuity of some low-level fea-
tures (at least in the chromatic composition and lighting [27]).

news
video

reports

studio

politics

sports

anchor

guests

football

tennis

Fig. 2 Hierarchical arrangement of news based on semantic labels.
Unfortunately this approach remains unfeasible in case of un-annotated
video material

This has been observed experimentally by many authors, by
analysing film-making rules and experimental results in the
psychology of audition.

4.1 Shot detection and low-level representation

Our approach assumes to start from an accurate shot segmen-
tation of the video into Ns separate shots (see [46] and [47]
for surveys on shot detection). Key-frames are then extracted
at regular intervals along the shot duration. Especially in case
of low-motion shots, we have observed that it is sufficient to
extract only one key-frame from each shot (e.g., the central
one) to have an adequate representation of its visual-con-
tent. In any case, the procedure has been designed in a scal-
able fashion in the sense that it is able to handle more than
one key-frame per shot, so as to adequately cover the visual-
content, for example in case of high-motion shots. The choice
of which low-level feature to extract from key-frames rep-
resents a fundamental step to perform the content analysis
[47], and it strongly influences the overall clustering per-
formances. In our work, to describe the visual-content of
shot key-frames, we compare two low-level features based
on color. The first one, the histogram on HSV color space,
has been widely used, while the second one, the Tree-Struc-
tured Vector Quantization (TSVQ), is here proposed as an
extension of the method introduced in [12]. However, it is
important to note that the proposed clustering method can
ideally employ any low-level visual feature, provided with a
suitable method of similarity estimation.

4.2 Shot-to-shot and cluster-to-cluster similarities

Let φ f (Si , S j ) be the measure of similarity1 between two
shots Si and S j , based on the chosen feature f extracted from

1 Note that we consider here a shot-to-shot “similarity” and not a “dis-
tance” since, although a measure can be symmetric, in most cases it is
no longer a distance, for the reasons exposed in [26].
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Fig. 3 Dendrogram
representation of a clustering
process on 19 shots extracted
from the Portuguese News
programme. Note that the first
two clusters to be merged are
the ones connected by the
shortest !-branch

shot key-frames. According to the agglomerative approach,
at the beginning of the clustering process each of the Ns
shots is assigned to a different cluster. Then, iteratively on
each level-i (where i ∈ I = {Ns, Ns − 1, . . . , 1} indicates
the number of the remaining clusters at the current stage),
the HAC merges the two most similar clusters, from level-
Ns (one shot per cluster) up to level-1 (all shots in the last
remaining cluster).

Similarity #(Ch, Ck) between two clusters is computed
according to the average-linkage approach, i.e., by averag-
ing the similarities between all the shots of the two clusters,
that is:

#(Ch, Ck) = 1
Nh Nk

∑

Si ∈Ch

∑

S j ∈Ck

φ f (Si , S j ), (1)

where Nh (respectively Nk) is the number of shots belonging
to cluster Ch (respectively Ck).

4.3 Dendrogram representation

It is well known that any hierarchical agglomerative clus-
tering can be graphically represented by a binary-tree called
dendrogram [13]. An example dendrogram, built on a short
sequence of 19 shots excerpted from the Portuguese News
programme, is shown in Fig. 3.

It consists of many !-shaped branches, where each
!-branch represents the fusion between two clusters. The
height of the branch is proportional to the similarity between
the two clusters, so that short (respectively long) connec-
tions correspond to similar (respectively dissimilar) clusters.
This means that the first two clusters to be merged are those

connected by the shortest !-branch, as can be seen in Fig. 3.
The clustering process then continues on higher levels with
the fusion of the clusters connected by progressively longer
!-branches.

5 Leading-Cluster-Analysis

If no criterion is used to stop the clustering of the Ns key-
frames, a classic hierarchical approach produces a tree which
is (Ns − 1) levels deep. The main objective of the Leading-
Cluster-Analysis is to generate a hierarchical preview
P = {L1, L2, . . . , Lw} organised on a reduced number of
w levels, where w << Ns .

As shown in Fig. 4, each level Li of the hierarchy con-
tains the whole set of Ns key-frames organised in a number
of visually similar clusters. Such organisation enables struc-
tured exploration: once the user identifies an interesting key-
frame, he can interactively request more similar content from
the same cluster, or refine his search by descending into the
hierarchy, thus restricting the scope of his quest.

In unsupervised clustering, a formal approach to the issue
of deciding how many clusters are present, is to devise some
measure of goodness of fit that expresses how well a given
clustering matches the data. The Chi-Squared and Kolmogo-
rov–Smirnov statistics [13] are the traditional measures of
goodness of fit, but the curse of dimensionality usually
demands the use of simpler measures. Therefore, a common
approach is to repeat the clustering procedure for an increas-
ing (or decreasing) number of clusters, and to see how a
criterion function J changes.
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Lw-2

Lw-1

Lw C1

C1 C2

C1 C2 C3 C4

C2 C3C1 C4 C5 C6

...

...

Fig. 4 Structure of the hierarchical preview

Classic HAC approaches usually adopt a global criterion
function in order to stop the clustering. This can be the widely
used minimum variance criterion, or a criterion based on the
cluster dimensions [17], or on the desired final number of
clusters, or again a constraint on a measure of global dis-
tortion [48]. For example, when using a minimum variance
criterion, if the Ns shots are naturally grouped into k clus-
ters, one would expect to see J increase slowly from J = 0
(when each cluster is a singleton) until we have k clusters,
and increasing much more rapidly thereafter. However this
might not be true in case the derivative of J is not charac-
terized by a pronounced global maximum, since the mean
of the squared error is averaged on all the items. Again, by
setting in advance the desired number of clusters, the unique
final partition is obtained without any control on the visual-
content coherency of each cluster. Similar arguments can be
advanced for all the methods used to stop the clustering which
are based on a global criterion function.

The proposed Leading-Cluster-Analysis (LCA) provides
a more robust solution to the issue of determining the num-
ber of natural clusters by using a criterion function which is
local to few clusters, thus avoiding the drawbacks of global
criteria and reducing the computational time. Observing the
dendrogram, there are only few main clusters around which
the merging takes place (that we name leading clusters).
Since a large disparity in the branch heights on these clusters
indicates the presence of natural grouping, LCA can identify
when irrelevant shots start being wrongly incorporated into
a coherent cluster.

Traditional flat algorithms cannot easily produce nested
partitions, unless by iterating the clustering on different

levels. The proposed LCA instead, provides a natural solution
to this issue by automatically building a hierarchy of parti-
tions where the number of layers and the number of clus-
ters in each layer depend only on the video-content, and are
not assigned a priori. By adopting such a scheme, the video
content is progressively condensed, from bottom to top, at
decreasing levels of granularity.

5.1 Identification of leading clusters

To perform the Leading-Cluster-Analysis, it is useful to dis-
tinguish on a dendrogram two different categories of clusters,
namely the leading clusters and the solitary ones. The lead-
ing clusters can be considered the main clusters around which
the agglomerative process takes place. The underlying idea
is that the leading clusters are the first formed clusters, while
solitary clusters are singletons which join a leading cluster
on a higher level of the dendrogram.

In particular, by observing the bottom level of the dendro-
gram, where each cluster contains a single shot, it is easy to
single out the leading clusters as the ones originally formed
by the fusion of two singletons (see Fig. 5, where the lead-
ing clusters have been highlighted, together with their con-
necting !-branches). On the contrary, all the other singleton
clusters (which in Fig. 5, for the sake of clarity, are floating
on a higher level than the leading clusters) can be referred to
as the solitary clusters.

Let C L
k be a leading cluster originally formed at level-k,

where k ∈ I (in Fig. 5 for example, the leading cluster
C L

15 is the one formed by the two “anchorman” shots at the

Fig. 5 Zoom of the dendrogram in Fig. 3 with the leading clusters
highlighted at the bottom level, and the solitary clusters floating on
higher levels
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bottom-left of the dendrogram). Let C S
h be a generic soli-

tary cluster instead, where h ∈ I denotes that such cluster
participates in a merging for the first time at level-h.

Climbing from the bottom to the top of the dendrogram, on
each level-i (i ∈ I ) a leading cluster C L

k and another cluster
Ch (where Ch can either be a leading cluster or a solitary one)
are involved in a merging operation. As a result of the fusion,
if Ch is a solitary cluster (i.e., Ch = C S

h ), the leading cluster
C L

k will include all the shots of C S
h . However, if Ch is also a

leading cluster (i.e., Ch = C L
h ), after the merging the older

leading cluster will include all the shots of the more recently
formed one, i.e., the leading cluster C L

k (respectively C L
h )

will include all the shots of C L
h (respectively C L

k ) if k > h
(respectively h > k). In both cases, after each merging, one
leading cluster will include all the shots of the two merged
clusters. Since only one leading cluster survives each merg-
ing operation, it is possible to perform a faster (but complete)
analysis on the clustering process by only monitoring what
happens to leading clusters, while ignoring other ones.

5.2 Local distortion in leading clusters

Once identified a leading cluster, we are interested in detect-
ing abrupt changes in its visual content when it is involved
in merging operations.

Let C L
k (i) be a leading cluster when observed at

level-i (i ∈ I = {Ns, Ns − 1, . . . , 1}). Since C L
k is not

involved in a merging operation on each step i ∈ I , let
IC L

k
= {i1, i2, . . . , in} ⊆ I be the sub-set of levels of I in

which C L
k actually takes part in a merging (note that i1 = k).

To evaluate the changes in the visual-content as the cluster
grows bigger, we introduce the cluster local distortion as a
measure of the cluster visual coherence. The local distortion
$ of the cluster C L

k at level i j is the similarity # between
the two clusters being merged:

$(C L
k (i j )) = #(C L

k (i j−1), Ch), (2)

where Ch is the cluster (that can be leading or not) merged
with C L

k at level-i j . An example of local distortion
$(C L

k (i j )) for a leading cluster C L
k at merging steps i j is

shown in Fig. 6.

5.3 Freeze levels

From the observation of the local distortion $, a criterion to
stop the growth of each leading cluster is derived. In Fig. 6
significant increases in the slope of local distortion $ corre-
spond to the merging steps in which the cluster visual-content
drastically changes. By analyzing $(C L

k (i j )) of each leading
cluster, we are able to automatically determine for each lead-
ing cluster the merging steps which determine abrupt changes
in its visual-content coherence. In particular by analyzing the
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Fig. 6 Local distortion $ for a leading cluster C L
k with respect to the

merging steps i j ; the significant increases in the slope are caused by
substantial changes in the cluster visual-content

discontinuities of the local distortion of each leading cluster,
and by setting a threshold δ on the discrete derivative & of
the local distortion:

&(C L
k (i j )) = $(C L

k (i j )) − $(C L
k (i j−1)) < δ, (3)

we determine the so-called freeze levels. These are the set
FC L

k
= {i f1, i f2 , . . . , i fn } of levels belonging to IC L

k
(i.e.,

FC L
k

⊆ IC L
k

) for which &(C L
k (i j )) exceeds δ.

Since persistent semantics is often conveyed by an implicit
continuity of low-level features, the collection of these lev-
els indicates the instants in the growing process of C L

k that
are likely related to a change in the cluster semantics too.
In general low values of δ, by allowing only the merging
of clusters with strong visual similarity, determine a large
number of freeze levels, while higher values, by allowing the
fusion of also visually different clusters, reduces the cardi-
nality of FC L

k
.

5.4 Hierarchy of partitions

Once extracted the freeze levels for each leading cluster,
the obtained partitions are organized into a hierarchical pre-
view P = {L1, L2, . . . , Lw}. The number of summarization
layers w depends on the nature of the video-content and it
is given by the maximum cardinality among the sets FC L

k
,

that is:

w = max
k

∣∣∣FC L
k

∣∣∣ . (4)

To extract the mth-layer of the hierarchical summary
(m = 1, 2, . . . , w), the algorithm lets each leading clus-
ter C L

k grow until its mth-freeze level (i.e., until level-i fm ).
This means that in order to obtain the first-layer of the video
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Fig. 7 An example of the extraction of the first two layers of the hier-
archical summary for the news programme Portuguese News. a The
clusters (in balloons) belonging to the first-layer of the summary of

Portuguese News, shown on the dendrogram. b The clusters of the sec-
ond-layer of the summary. Notice that some clusters have grown in size
with respect to the first-layer.

Fig. 8 Hierarchical summary
obtained from a short
Portuguese News sequence by
using the LCA approach

summary all the leading clusters are allowed to grow until
their first-freeze level. Similarly, in order to obtain the sec-
ond-layer of the summary, all the leading clusters are allowed
to grow until their second-freeze level, and so on.

An example of the extraction of the first two layers of a
hierarchical summary for the news programme is given in
Fig. 7, while the whole related hierarchy is shown in Fig. 8.
The first extracted partition (Fig. 7a) provides the layer with

the finest granularity, while from the second-layer (Fig. 7b)
on, clusters grow in size and their number reduce.

5.5 Dependency condition

When a leading cluster C L
k is allowed to grow until its mth-

freeze level (i k
fm

), it may happen that it has to merge with
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another leading cluster C L
h which has already reached its

mth-freeze level (i h
fm

), thus being prevented from any further
merging.

So at each step i k
j (where i k

j ∈ {i k
1 , . . . , i k

fm
} ⊆ IC L

k
), when

C L
k merges with another leading cluster C L

h , we should ver-
ify that the cluster C L

h has not been already arrested on a
previous level (lower in the dendrogram), that is:

i h
fm

≤ i k
j . (5)

If this condition is not satisfied, the growth of C L
k must be

stopped iteratively at lower levels on the dendrogram (i.e.,
going back to level i k

( j−1)) until the dependency condition
with the corresponding merging cluster is verified.

5.6 Depth of the hierarchy

By tuning the value of δ, the user influences the number of the
extracted layers, obtaining a more or less refined hierarchical
summary. The use of δ might be erroneously interpreted as an
a priori criterion to stop the clustering; in this case, it would
suffer from the same limitations discussed for the other a
priori criteria. It is instead a tuning parameter offered to the
end-user to generate hierarchical summaries with different
granularity.

If the end-user is interested in a rough granularity and
a reduced set of layers (for example if he/she is interested
in distinguishing only “daylight” shots from “night-time”
ones) a higher-value of δ will allow to detect only relevant
visual-changes of content (in terms of chromaticity and light-
ing). On the contrary, if the user is interested in having a
deeper hierarchy of finer granularity (e.g., to have single
actors of a dialogue in separate clusters) he/she can reduce the
value of δ. By doing so, all minimum changes in the visual-
content of each cluster (reflected by the discontinuities in the
leading cluster distortion) will be registered.

Therefore, once we have set δ, we have not chosen the
final number of clusters on one summarization layer, but this
depends only on the number of natural clusters which are
present in the video at the requested granularity. In the same
way, for a given value of δ, also the final number of summa-
rization layers is not set: in the case of very coherent visual-
content, we will obtain a shallow hierarchical summary. On
the contrary, for the same value of δ, if the visual-content of
the video is very incoherent, the depth of the hierarchy will
naturally increase.

6 Tree-structured vector quantization

Regarding the low-level features, the proposed procedure for
creating the hierarchical summary is very flexible since it
may use any type of real valued low-level feature to compute

pairwise similarity between shots. In order to improve the
performance of the clustering with respect to traditionally
employed low-level features, we propose to represent the
shot visual-content in terms of tree-structured vector quan-
tization (TSVQ) code-books.

In the past, the color histogram has been the most adopted
feature in order to perform these operations on images, due
to its simplicity and low computational cost. However the
histogram often does not match perceptually well different
images, since it does not take into account the local spatial
distribution of color in images.

Although the main contribution of this paper deals with
the clustering procedure, in this section details on the code-
book design and an effective shot-to-shot similarity measure
based on such code-books are discussed.

6.1 Code-book design

For each extracted key-frame, a TSVQ code-book is designed
so as to reconstruct each frame within a certain distortion
limit. After having been sub-sampled in both directions at
QCIF resolution, every key-frame is divided into non-
overlapping blocks of N ×N pixels. Block color components
in the LUV color space are then used as training vectors to a
TSVQ algorithm [11] which uses the Generalized Lloyd Algo-
rithm. Code-books of increasing size 2n (n = 0, 1, 2, . . .) are
then computed, until a pre-determined constraint on distor-
tion is satisfied (or a maximum code-book size is reached).
Then, an attempt is made to reduce the number of code-words
in the interval [2n−1, 2n] without exceeding the imposed dis-
tortion.

Finally the algorithm returns the code-words and the TSVQ
code-book final dimension for each investigated shot. Note
that the dimensions of each code-book could be different
for each single shot. In fact the objective of this approach is
to produce code-books with close distortion values, so that
a code-book can represent the content of visually similar
key-frames with a comparable distortion. This allows mea-
suring the visual similarity between shot key-frames through
a sound comparison between their related code-books.

6.2 Shot-to-shot dissimilarity based on TSVQ

The dissimilarity between two shots is then measured by
crossing the code-books on the visual content of shot key-
frames. Let Si be a shot, and let K j be a generic code-book; if
Vi is the number of vectors of Si , when a vector of Si is quan-
tized to a code-word of K j , a quantization error occurs. This
error may be measured by the average distortion DK j (Si ):

DK j (Si ) = 1
Vi

Vi −1∑

p=0

‖sip − k jq‖2, (6)
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Table 1 Video data set

Video (genre) Length Shots

Portuguese News (news) 47:21 476

Notting Hill (movie) 2:04:00 1,029

A Beautiful Mind (movie) 2:15:42 1,202

Pulp Fiction (movie) 2:34:30 1,476

Camilo and Filho (soap) 38:12 140

Riscos (soap) 27:37 423

Misc. (basket/soap/quiz) 38:30 195

Don Quixotte (cartoon) 15:26 188

where k jq is the word of K j with the smallest Euclidean
distance from sip (q = arg minz ‖sip − k jz‖2).

Furthermore, given two code-books Ki and K j , the value:

ϕi, j (Si ) = |DKi (Si ) − DK j (Si )| (7)

can be interpreted as the dissimilarity between the two code-
books, when applied to the same shot Si .

The dissimilarity between two shots Si and S j is defined
as a symmetric form of the measure used in [12], i.e.:

φvq(Si , S j ) = ϕi, j (Si ) + ϕi, j (S j ) (8)

where ϕi, j (S j ) is the dissimilarity between code-books Ki
and K j when are both applied to shot S j . The smaller φvq
is, the more similar the shots are. Note that the similarity is
based on the cross-effect of the two code-books on the two
considered shots. In fact, it may be possible that the major-
ity of blocks of one shot (for example Si ), can be very well
represented by a subset of code-words of code-book K j rep-
resenting the other shot. Therefore K j can represent Si with a
small average distortion, even if the visual-content of the two
shots is only partly similar. On the other hand, it is possible
that code-book Ki does not lead to a small distortion when
applied to S j . So the cross-effect of code-books on the two
shots is needed.

6.3 TSVQ computational complexity

The traditional technique for searching in a code-book the
best code-word to associate to a certain vector, is to compare
the vector to be quantized with all the possible code-words,
performing then an exhaustive search. For big sets of vectors
and large code-books however, an exhaustive search would
require an enormous number of operations, due to elevate
number of needed comparisons.

For these reasons, in this work the techniques for a fast
search returning the same results of an exhaustive one have
been implemented as in [49]. These methods obtain a reduced
computational complexity due to geometric considerations:
each vector is compared only with the code-words belonging

to a specific region, which has been determined by observing
the spatial distribution of the code-words with respect to the
vector to be quantized.

Supposing to have Ns shots, we have to compute
Ns(Ns − 1)/2 shot-to-shot dissimilarities and store the
results in a table (whose complexity is then O(N 2

s )). In the
case of a movie of 90 min length with about 1,000 shots, on
an Xserve Quad Xeon 64-bit server, the code-book genera-
tion and the table population require a computational time
which is in the order of the real time.

7 Experimental results

In order to objectively evaluate the clustering accuracy, we
focused our experiments on scripted-content videos (in
Table 1) taken from one news programme, three movies, two
soap operas, one miscellaneous and one cartoon, for a total
of about 10 h of video and several thousand shots.

Extensive tests on unscripted material have been also car-
ried over with the purpose of visualisation of rushes preview,
and are documented in [50]. As a general note to the exam-
ples and results presented in this paper, we remark that we
have not taken into account the visualisation issues regard-
ing video summarization, which have been instead deeply
analysed in [50]. Therefore, while the processing and the
evaluation are performed on the whole videos, the shown
examples present only short excerpts.

To better understand the output of the proposed scheme, a
summary of a short sequence from Pulp Fiction is shown in
Fig. 9. The obtained partitions are parsed into a hierarchical
structure, and each layer of the hierarchy contains a preview
of the video at a different granularity. Looking at the top of the
hierarchy, the fourth-layer is a unique cluster containing all
the shots; the third-layer distinguishes among three different
settings that a human may label as: “the corridor”, “the car”
and “the apartment”. Then, the hierarchical decomposition
continues on the second and on the first-layer, separating for
example the shots with actor “J. Travolta” from the ones
with “S.L. Jackson”.

7.1 Evaluation criterion and performance measures

Since common ground-truth sets to evaluate summarization
results are not yet available in literature, we need to estimate
the content representational value of each obtained summary
in terms of metrics that try to answer legitimate questions
such as “how accurate is the summary?” or “how concise is
the summary?”. To this purpose it has to be pointed out that,
if a human observe the same shot on different layers of the
hierarchy, the semantics of the cluster containing the shot
change depending on the summarization layer. For example

123



446 SIViP (2010) 4:435–450

Fig. 9 Hierarchical summary
obtained on a short Pulp Fiction
sequence by using the LCA
approach together with the
TSVQ color feature (color figure
online)

Fig. 10 The semantics of the
clusters change depending on
the summarization layer

in the first-layer of the Pulp Fiction summary (see Fig. 10)
we have a cluster containing only shots sharing the semantics
“J. Travolta in a car”. But if we climb on the higher level
of abstraction, the same shot is clustered together with those
showing S.L. Jackson in the same car, so that a human would
label the cluster semantic as “Man in a car”.

So, in order to evaluate the quality of the detected results,
the following criterion has been applied:

“A cluster belonging to the mth-layer is judged to be cor-
rectly detected for that summarization layer if and only if

all the shots in the cluster share a common semantic mean-
ing given a posteriori by a human observer. Otherwise it is
judged as wrongly detected.”

The two measures proposed in [21] are used for evaluating
each layer of the preview. The first one measures the clus-
tering precision P (answering the question “how accurate is
this summary layer?”) and it is defined as:

P = Cc

Nc
, (9)
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Fig. 11 Piecewise-linear approximations of the “Compression–Precision” curves comparing the LCA, HAC and KM clustering methods using
the same HSV histogram feature

where Cc is the number of correctly detected clusters in the
summarization layer, and Nc is the total number of detected
clusters at the same layer.

Clearly, at the top summarization layer (all shots belong-
ing to one cluster), the cluster precision would be P = 1
(according to the semantic “whole video”). Since the same
value (P = 1) would be obtained at the beginning of the clus-
tering when we treat each shot as a cluster, another measure
is needed to express the achieved compression factor (“how

concise is the summary ?”). The measure of compression C ,
is given by:

C = 1 − Nc

Ns
, (10)

where Ns is the total number of shots. When each cluster is
a singleton, the measure of compression C is zero. On the
contrary compression increases as clusters grow bigger and
their number reduces.
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Fig. 12 Piecewise-linear approximations of the “Compression–Precision” curves comparing the TSVQ code-book with the HSV color histogram
using the same LCA algorithm (color figure online)

7.2 Clustering effectiveness: LCA versus other algorithms

Our experimental trials are divided into two main parts to
distinguish the contributes provided by the LCA approach
from those yielded by the TSVQ.

In the first part of the experiments, we compare the
Leading-Cluster-Analysis (LCA) with two state-of-the-art

approaches: a pure Hierarchical Agglomerative Clustering
(HAC) and a partitional approach based on a k-means (KM)
like the one used in [16]. Tests are performed on the three
algorithms by using the same low-level feature, that is the
widely employed color histogram on HSV space.

Results obtained by the three clustering algorithms LCA,
HAC and KM are compared in terms of precision and
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compression. P is computed as the average scores assigned
by ten human observers who visually verified the semantic
coherence of each cluster at three different levels of com-
pression (the first three layers of the summaries found by
the LCA, with δ = 1.5). Piecewise-linear approximations of
the “Compression–Precision” curves for all the test video
sequences are sketched in Fig. 11. In most cases the LCA
approach outperforms the other methods in clustering
together similar shots showing shared a-posteriori labeled
semantics.

7.3 Low-level feature efficiency: TSVQ versus HSV
histogram

In the second set of experiments we compare the HSV histo-
gram (using the intersection of color histograms as pairwise
similarity measure) with the proposed TSVQ feature and its
related metric. For the generation of all the code-books we
allow a maximum distortion Dmax = 1,500 and a block
dimension of 4 × 4 pixels.

TSVQ code-book and HSV histogram are compared in
terms of precision and compression, by using the same
clustering algorithm, i.e., the LCA, on all the video data
sequences. As before, values of precision are obtained as the
average scores assigned by ten human observers verifying
the semantic coherence of each cluster on the first three lay-
ers of the summaries found by the LCA, with δ = 1.5. Once
δ is fixed, the hierarchy depth and the values of compression
obtained for the same summarization layers can change from
video to video.

Piecewise-linear approximations of the “Compression–
Precision” curves for all the test video sequences are sketched
in Fig. 12. In most cases, except for the cartoon, which is
characterized by a reduced set of homogenous colors, the
TSVQ feature outperforms the use of HSV color histogram
in representing the shot visual-content.

7.4 LCA computational complexity

The computational complexity of the LCA is comparable to
that of any hierarchical algorithm.

Once computed all pairwise dissimilarities, finding the
minimum distance pair of shots requires that we scan through
the complete table. Thus, for the first agglomerative step, the
total complexity is given by O(Ns(Ns − 1)/2) = O(N 2

s ).
For an arbitrary merging step instead (i.e., from a num-

ber of i clusters to i − 1), we need to scan through the
(Ns(Ns − 1)/2 − i) unused distances in the table and keep
trace of the smallest one. This is again O(N 2

s ). If we want to
stop the clustering procedure when only one cluster is left,
the full time complexity is thus O(N 2

s · Ns) = O(N 3
s ).

In our implementation, the presence of a reduced set
of clusters to be monitored (the leading clusters) speed up

the search for the minimum, thus reducing the overall
complexity.

On our test benchmark (video of 90 min with 1,000 shots,
Xserve Quad Xeon 64-bit server), the building of the hierar-
chy by LCA, requires less than 5 s.

8 Conclusions

In this paper we have proposed an algorithm for the automatic
clustering of video shots, by tailoring a hierarchical cluster-
ing method to the specific application of visual-content sum-
marization. To prevent irrelevant shots from being wrongly
incorporated into a cluster, we propose a local measure of
visual coherence by using the Leading-Cluster-Analysis.
LCA provides a robust solution to the problem of determining
how many natural clusters are present at different levels of
content representation, and reduces the computational time
for the generation of summaries.

The performance of the proposed approach has been eval-
uated using objective metrics that estimate the content rep-
resentational value of the obtained hierarchical summaries.
In particular, extensive tests have been carried out on a large
collection of video data taken from different genres of pro-
grammes, by using and comparing different visual features
and different clustering algorithms.
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