We generalize the shape optimization problem for the existence of stable equilibrium configurations of nematic and cholesteric liquid crystal drops surrounded by an isotropic solution to include a broader family of admissible domains with inner boundaries, allowing discontinuities in the director field across them. Within this setting, we prove the existence of optimal configurations under a volume constraint and show that the minimization problem is a natural generalization of that posed for regular domains.

A shape optimization problem for nematic and cholesteric liquid crystal drops

Giacomini A.
;
Paparini S.
2025-01-01

Abstract

We generalize the shape optimization problem for the existence of stable equilibrium configurations of nematic and cholesteric liquid crystal drops surrounded by an isotropic solution to include a broader family of admissible domains with inner boundaries, allowing discontinuities in the director field across them. Within this setting, we prove the existence of optimal configurations under a volume constraint and show that the minimization problem is a natural generalization of that posed for regular domains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/631085
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact