This data article describes the collection process of two sub-datasets comprehending images of Apis mellifera captured inside a commercial beehive (“Frame” sub-dataset, 2057 images) and at the bottom of it (“Bottom” sub-dataset, 1494 images). The data was collected in spring of 2023 (April–May) for the “Frame” sub-dataset, in September 2023 for the “Bottom” sub-dataset. Acquisitions were carried out using an instrumented beehive developed for the purpose of monitoring the colony's health status during long periods of time. The color cameras used were equipped with different lenses accordingly (liquid lenses for the internal one, standard lens of 8 mm focal length) and actuated by an embedded board, alongside red LED strips to illuminate the inside of the beehive. Images captured by the internal camera were mostly out-of-focus, thus a filtering procedure based on the adoption of focus measure operators was developed to keep only the in-focus ones. All images were manually labelled by experts using 2-class bounding boxes annotations representing full visible bees (class “bee”) and blurred or occluded bees according to the sub-dataset (“blurred_bee” or “occluded_bee” class). Annotations are provided in YOLO v8 format. The dataset can be useful for entomology research empowered by computer vision, especially for counting tasks, behavior monitoring, and pest management, since a few occurrences of Varroa destructor mites could be present in the “Frame” sub-dataset.

BEEHIVE: A dataset of Apis mellifera images to empower honeybee monitoring research

Micheli M.
Investigation
;
Lancini M.
Supervision
;
Nuzzi C.
Writing – Review & Editing
;
Pasinetti S.
Writing – Review & Editing
2024-01-01

Abstract

This data article describes the collection process of two sub-datasets comprehending images of Apis mellifera captured inside a commercial beehive (“Frame” sub-dataset, 2057 images) and at the bottom of it (“Bottom” sub-dataset, 1494 images). The data was collected in spring of 2023 (April–May) for the “Frame” sub-dataset, in September 2023 for the “Bottom” sub-dataset. Acquisitions were carried out using an instrumented beehive developed for the purpose of monitoring the colony's health status during long periods of time. The color cameras used were equipped with different lenses accordingly (liquid lenses for the internal one, standard lens of 8 mm focal length) and actuated by an embedded board, alongside red LED strips to illuminate the inside of the beehive. Images captured by the internal camera were mostly out-of-focus, thus a filtering procedure based on the adoption of focus measure operators was developed to keep only the in-focus ones. All images were manually labelled by experts using 2-class bounding boxes annotations representing full visible bees (class “bee”) and blurred or occluded bees according to the sub-dataset (“blurred_bee” or “occluded_bee” class). Annotations are provided in YOLO v8 format. The dataset can be useful for entomology research empowered by computer vision, especially for counting tasks, behavior monitoring, and pest management, since a few occurrences of Varroa destructor mites could be present in the “Frame” sub-dataset.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352340924010175-main.pdf

accesso aperto

Descrizione: full text
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/615049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact