For every 2 -regular graph F of order v , the Oberwolfach problem O P(F) asks whether there is a 2 -factorization of Kv (v odd) or Kv minus a 1 -factor (v even) into copies of F. Posed by Ringel in 1967 and extensively studied ever since, this problem is still open. In this paper we construct solutions to O P(F) whenever F contains a cycle of length greater than an explicit lower bound. Our constructions combine the amalgamationdetachment technique with methods aimed at building 2 -factorizations with an automorphism group having a nearly -regular action on the vertex -set. (c) 2024 Elsevier B.V. All rights reserved.

A constructive solution to the Oberwolfach problem with a large cycle

Traetta T.
2024-01-01

Abstract

For every 2 -regular graph F of order v , the Oberwolfach problem O P(F) asks whether there is a 2 -factorization of Kv (v odd) or Kv minus a 1 -factor (v even) into copies of F. Posed by Ringel in 1967 and extensively studied ever since, this problem is still open. In this paper we construct solutions to O P(F) whenever F contains a cycle of length greater than an explicit lower bound. Our constructions combine the amalgamationdetachment technique with methods aimed at building 2 -factorizations with an automorphism group having a nearly -regular action on the vertex -set. (c) 2024 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
31_OP_Large_Cycle.pdf

accesso aperto

Licenza: Non specificato
Dimensione 328.62 kB
Formato Adobe PDF
328.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/614346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact