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For every 2-regular graph F of order v , the Oberwolfach problem O P (F ) asks whether 
there is a 2-factorization of K v (v odd) or K v minus a 1-factor (v even) into copies of F . 
Posed by Ringel in 1967 and extensively studied ever since, this problem is still open.
In this paper we construct solutions to O P (F ) whenever F contains a cycle of length 
greater than an explicit lower bound. Our constructions combine the amalgamation-
detachment technique with methods aimed at building 2-factorizations with an automorphis
group having a nearly-regular action on the vertex-set.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction

Let K ∗
v denote the complete graph K v if v is odd, or K v minus the edges of a 1-factor I if v is even. Given any 2-regular 

graph F of order v , the Oberwolfach problem O P (F ) asks for a decomposition (i.e., a partition of the edge set) of K ∗
v into 

copies of F . It was originally posed by Ringel in 1967 when the order v is odd, and then extended to even orders by Huang, 
Kotzig, and Rosa [20] in 1979. We notice that the even variant can be seen as the maximum packing version of the original 
problem posed by Ringel. Although it has received much attention over the past 55 years, OP remains open. Complete and 
constructive solutions are known when the cycles of F have the same length (see [2,19]), when F is bipartite (see [6]), 
when F has exactly two cycles (see [24]), or for orders belonging to an infinite set of primes (see [7]) or twice a prime (see 
[1]).

We refer to [14, Section VI.12] for further results, up to 2006, concerning the solvability of infinite instances of OP, which 
however settle only a small fraction of the general problem. We notice, in particular, that no complete solution is known 
as soon as F has 3 or more cycles. A recent survey on constructive resolution methods that proved successful for solving a 
large portion of the Oberwolfach problem can be found in [13]. We notice that, opposite to the even case, which concerns 
2-factorizations of K2n − I , the variant to OP that deals with 2-factorizations of K2n with additional copies of a given one 
factor I has been considered only recently in [3,21,22,27].

Letting L = {μ1�1, . . . , μu �u} be a multiset of integers �1, . . . , �u ≥ 3, with multiplicity μ1, . . . , μu , respectively, we write 
F � [L] or F � [μ1�1, . . . , μu �u], whenever F is a 2-regular graph whose list of cycle-lengths is L. In this case, we may use 
the notation O P (μ1�1, . . . , μu �u) in place of O P (F ). We point out that OP(F ) has a solution whenever |V (F )| ≤ 60 [15,23], 
except when F ∈ {[23], [43], [4, 5], [23, 5]}.

Constructive solutions to O P (F ) are given in [12] whenever

F � [x,2m1, . . . ,2mt,
2�1, . . . ,

2�u], (1.1)
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and x is greater than an explicit lower bound. Condition (1.1) places a constraint on the cycle structure of F which cannot 
contain an odd number of �-cycles for every odd � �= x. It is worth mentioning that [12] provides a similar result for the 
minimum covering and the 2-fold variants of OP, but in the second case (the 2-fold variant) there is no restriction on the 
cycle structure of F .

The aim of this paper is to generalize the main result of [12] by dropping restriction (1.1). More precisely, we prove 
Theorem 1.1 which employs the following notation: given a list L of positive integers (not necessarily distinct), we write L0
and L1 to represent the multiset of even and odd elements of L, respectively. Note that by |L| we mean the size of L as a 
multiset and let max(∅) = 0.

Theorem 1.1. O P (y, �1, �2, . . . , �u) has an explicit solution whenever

y ≥ 3b + 24b0 + 28b1 + 119,

where b = ∑u
i=1 �i , b0 = 2|L0| (max(L0) + 3), b1 = 7|L1|−1(2 max(L1) + 1) and L = {�1, �2, . . . , �u}.

In other words, Theorem 1.1 (proved in Section 3) constructs solutions to O P (F ) for every arbitrary 2-regular graph F
with a large cycle of length greater than an explicit lower bound, thus taking us one step closer to a complete constructive 
solution of the Oberwolfach Problem.

The emphasis placed by Theorem 1.1 on providing ‘explicit’ solutions and an ‘explicit’ lower bound aims to point out 
the constructive approach used in this paper, which is antithetical to the purely existential ones, such as those based on 
probabilistic methods that recently allowed in [16] to obtain a non-constructive asymptotic solution to the Oberwolfach 
problem for orders greater than a lower bound that is however unquantified.

Theorem 1.1 exploits two results, Corollary 2.2 and Theorem 2.6, obtained via completely different methods, described 
in Section 2. Corollary 2.2, proven in [18], extends (1, 2)-decompositions (see Section 2.1) of K ∗

m to 2-factorizations of K ∗
n

(m < n) by making use of the very powerful amalgamation-detachment technique introduced by Hilton [17]. Theorem 2.6
provides solutions to O P (x, 2�1, . . . , 2�u) satisfying the matching property (see Section 2.2). Here, the method used is based 
on constructing solutions to OP with a pyramidal automorphism group.

2. Preliminaries

In this section we introduce the basic notions and the preliminary results we need to prove Theorem 1.1.
Throughout the paper, all graphs are simple and finite. Given a subgraph F of G (briefly, F ⊂ G), we denote by G \ F

the graph G minus the edges of F . We refer to the number � of edges of a path or a cycle as their length, and speak of an 
�-path (� ≥ 1) or an �-cycle (� ≥ 3), respectively. In particular, we denote by P = 〈p1, . . . , p�〉 the �-path whose edges are 
{pi, pi+1}, for 1 ≤ i ≤ � − 1 and write (p1, . . . , p�) to denote the �-cycle obtained from P by adding the edge {p1, p�}. A 
linear forest (resp. 2-regular graph) is the vertex-disjoint union of paths (resp. cycles) with at least one vertex of degree 2. 
We are hence preventing a linear forest to be a matching, that is, the vertex disjoint union of 1-paths.

A graph F , which is not a matching, whose vertices have degree 1 or 2, will be called a (1, 2)-graph. Hence, F can be 
either a linear forest, a 2-regular graph, or the vertex-disjoint union of two such graphs. The list of the cycle-lengths of 
F is referred to as the cycle structure of F and denoted by cs(F ). Therefore, cs(F ) = {μ1�1, . . . , μu �u} means that F is the 
vertex-disjoint union of a (possibly empty) linear forest and u distinct 2-regular graphs, each containing exactly μi ≥ 1
cycles of length �i ≥ 3, for 1 ≤ i ≤ u. An arbitrary 2-regular graph with cycle structure L = {�1, . . . , �u} will be denoted by 
[L] or [�1, . . . , �u]. If F is isomorphic to [L], we write F � [L].

A factor of a simple graph G is a subgraph F of G such that V (F ) = V (G). When F is a matching, 2-regular, or a (1, 2)-
graph, we speak of a 1-factor, 2-factor, or (1, 2)-factor of G , respectively. We recall that K ∗

v is either K v when v is odd, or 
K v \ I when v is even, where I is a 1-factor of K v .

A decomposition of a simple graph G is a set G of graphs whose edge-sets partition E(G). We speak of a 2-decomposition 
or a (1, 2)-decomposition if each graph in G is 2-regular or a (1, 2)-graph, respectively. Furthermore, if all graphs in G are 
also factors of G , then we speak of a factorization, 2-factorization or (1, 2)-factorization of G , respectively.

The proof of our main result, Theorem 1.1, is based on Corollary 2.2 and Theorem 2.6, obtained through completely 
different methods which we describe in the following.

2.1. Extending (1, 2)-decompositions to 2-factorizations

Corollary 2.2 is based on the amalgamation-detachment technique introduced by Hilton [17] to extend a path decomposi-
tion of Km to a Hamiltonian cycle decomposition of Kn (m < n). This constructive method was then used in [18] to solve 
O P (x, �, . . . , �) for every sufficiently large x.

We start by recalling the crucial result in [18], that is, Theorem 2.1, and then provide a reduced version of it, Corol-
lary 2.2, stated by using the terminology of graph decompositions. Theorem 2.1 requires the basic notions on edge-colored 
graphs, which we recall in the following.
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An edge-coloring of a simple graph G with t colors is a function γ mapping E(G) onto a set C = {c1, . . . , ct} of colors. In 
this case, we say that G is t-edge-colored and for each i we denote by G(ci) the subgraph induced by the edges colored ci . 
It is not difficult to see that G = {G(c1), . . . , G(ct)} is a decomposition of G . Conversely, any decomposition of G naturally 
induces an edge coloring of G , by assigning distinct colors to the graphs of the decomposition. Given a graph G ′ containing 
G , an edge-coloring γ ′ of G ′ is called an extension of γ , if γ ′ coincides with γ over the edges of G .

Finally, we denote by δmax(G) the maximum degree of the vertices of G , and recall that a composition of n is a sequence 
(s1, . . . , st) of positive integers that sums to n.

Theorem 2.1. [18, Theorem 6] Let m and n be integers, 1 ≤ m ≤ n, and let (s1, . . . , st) be a composition of n −1, where each si ∈ {1, 2}. 
Let Km be edge-colored with t colors c1, . . . , ct , and let f i denote the number of edges colored ci . This coloring can be extended to an 
edge-coloring of Kn where each Kn(ci) is an si-factor, and if si = 2 then Kn(ci) contains exactly one more cycle than Km(ci), if and 
only if the following conditions hold for 1 ≤ i ≤ t:

(1) f i ≥ si
(
m − n

2

)
,

(2) sin is even,
(3) δmax(Km(ci)) ≤ si .

The following result represents a reduced version of Theorem 2.1, restated using the terminology of graph decomposi-
tions.

Corollary 2.2. Let F = {F1, . . . , Fb} be a (1, 2)-decomposition of K ∗
2a+ε , where ε ∈ {1, 2}. If the following condition holds

b ≥ 2a − min
i

|E(Fi)|−ε
2 , (2.1)

then there exists a 2-factorization F+ = {F +
1 , . . . , F +

b } of K ∗
2b+ε such that

Fi ⊂ F +
i and |cs(F +

i )| = |cs(Fi)| + 1.

Proof. Set m = 2a + ε , n = 2b + ε , t = b + ε − 1 and let K ∗
m = Km \ I when m is even, that is, ε = 2. We make use of the 

(1, 2)-decomposition F and edge-color Km with t colors c1, . . . , ct so that

Km(ci) =
{

Fi if 1 ≤ i ≤ b,

I if i = b + 1 and ε = 2.

Each Fi has maximum degree 2, and we set si = δmax(Km(ci)) = 2 for 1 ≤ i ≤ b, while sb+1 = δmax(Km(cb+1)) = 1 when 
ε = 2. Note that (s1, . . . , st) is a composition of n. Therefore, conditions 2 and 3 of Theorem 2.1 are satisfied. Finally, let 
f i = |E(Fi)|, for 1 ≤ i ≤ b, while fb+1 = |I| = m/2 when m is even. Considering that |E(F1)| ≤ m = 2a + ε , by the inequality 
(2.1) we get a ≤ b which implies, when m is even, that fb+1 = m

2 ≥ sb+1(m − n
2 ) (condition 1 of Theorem 2.1 for i = b + 1). 

Furthermore, (2.1) is equivalent to saying that n ≥ 2m − mini f i which is in turn equivalent to condition 1 of Theorem 2.1
for 1 ≤ i ≤ b. Therefore, there is an edge-coloring of Kn with the same t colors c1, . . . , ct such that

(1) Kn(ci) is an si -factor of Kn containing Km(ci), for 1 ≤ i ≤ t;
(2) Kn(ci) contains exactly one more cycle than Kn(ci), for 1 ≤ i ≤ b.

Letting F +
i = Kn(ci) and considering that F +

i is a 1-factor of Kn if and only if i = b +1 and ε = 2, the set F+ = {F +
1 , . . . , F +

b }
provides the desired 2-factorization of K ∗

n . �
2.2. Solutions to OP satisfying the matching property

As mentioned above, the proof of Theorem 1.1 is also based on Theorem 2.6 which constructs solutions to suitable 
instances of OP satisfying the matching property (M) defined below. Theorem 2.6 is partly proven in [10,12] where the 
methods used are aimed at building pyramidal 2-factorizations. More precisely, a solution to O P (F ) is called pyramidal if it 
has an automorphism group � fixing 1 or 2 vertices (according to the parity of |V (F )|) and acting sharply transitively on 
the remaining. Pyramidal solutions can be equivalently described as follows: if |V (F )| = 2k + ε with ε ∈ {1, 2}, a solution 
F to O P (F ) is called ε-pyramidal (or just pyramidal) over an additive group � (not necessarily abelian) of order 2k, if 
we can label the vertices of F over � ∪ {∞1, ∞ε} so that F = {F + γ | γ ∈ �}, where F + γ (the right translate of F
by γ ) is the graph obtained from F by replacing each vertex x �∈ {∞1, ∞ε} with x + γ . The group of right translations 
induced by � over V (F ) = � ∪ {∞1, ∞ε} represents an automorphism group of F fixing ∞1 and ∞ε and acting sharply 
transitively on the remaining vertices. We notice that one usually uses the term 1-rotational in place of 1-pyramidal. A more 
general description of pyramidal 2-factorizations is given in [5,11], while some recent results showing the effectiveness of 
the pyramidal approach can be found in [4,9].
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Theorem 2.3, proven in [8] in a more general setting, shows how to construct a 1-rotational solution to O P (�0, �1, . . . , �u). 
Letting �0 denote the length of the cycles through ∞1, this solution can be easily extended (see [11,20]) to a 2-pyramidal 
solution of O P (�0 + 1, �1, . . . , �u). Before stating Theorem 2.3, we recall that given a graph G with V (G) ⊂ � ∪ {∞1, ∞2}, 
where � is any additive group not necessarily abelian, the list of differences of G , is the multiset �G = {x − y | (x, y) ∈
� × �, {x, y} ∈ E(G)} of all differences of adjacent vertices of G distinct from ∞1 and ∞2.

Theorem 2.3 ([8]). Let F � [�0, �1, . . . , �u] with V (F ) = Z2a ∪ {∞1}. If F + a = F and �F ⊃ Z2a \ {0}, then the set F = {F + i |
i ∈Z2a} is a 1-rotational solution of O P (F ).

Theorem 2.6 makes use of a general doubling construction described in [10]. This construction, when applied to a 
graceful labeling (defined below) of suitable (1, 2)-graphs, allows us to construct 2-regular graphs satisfying the assumptions 
of Theorem 2.3, hence pyramidal solutions to OP. This first part of Theorem 2.6 (under assumption 1) is proven in [10, 
Theorem 6.4]. However, we recall here its proof since we need to further show that the pyramidal solutions obtained satisfy 
the matching property (M) which will be crucial to prove the main result.

From now on, an arbitrary (1, 2)-graph with cycle structure L = {�1, . . ., �u} and exactly one path-component of length 
k will be denoted by [k | L] or [k | �1, . . . , �u]. If the graph T is isomorphic to [k | L], we write T � [k | L]. Such a graph has 
been called a zillion graph in [12].

We recall that a graceful labeling of [k | �1, . . . , �u] is a graph T � [k | �1, . . . , �u] with vertices in Z, such that V (T ) =
{0, . . . , a} and �T = {±1, . . . , ±a}, where a = k + ∑u

i=1 �i . Graceful labelings of [k | L] are built in [12] whenever k > B(L), 
where the lower bound B(L) depends on the cycle structure L and it is defined as follows:

B(L) = 6b0 + 7b1 + 29 where,

b0 = 2|L0|(max(L0) + 3), and b1 = 7|L1|−1(2 max(L1) + 1).

Theorem 2.4 ([12]). [k | L] has a graceful labeling whenever k ≥ B(L).

We call a halving of a 2-regular graph G � [x, 2�1, . . . , 2�u] any subgraph h(G) such that

cs(h(G)) = cs(G \ h(G)) = {�1, . . . , �u}. (2.2)

Clearly, h(G) can always be obtained by choosing u cycles of lengths �1, . . . , �u , respectively, and then adding an edge of 
the x-cycle of G . Note that both h(G) and G \ h(G) are certainly (1, 2)-graphs when u ≥ 1.

We say that a solution G to O P (x, 2�1, . . . , 2�u) satisfies the matching property (M) if

(M) there is a matching M such that
(a) cs(G \ M) = {�1, . . . , �u} = cs(h(G ′) ∪ M), and
(b) h(G ′) ∪ M is a (1, 2)-graph,
for some distinct graphs G, G ′ ∈ G and some halving h(G ′) of G ′ .

Example 2.5. Here, we show a solution to O P (x, 23, 24), with x ∈ {3, 4}, that satisfies the matching property.
Set V (K17) =Z16 ∪ {∞1} and consider the 2-factor G of K17 defined as the vertex-disjoint union of the following cycles

(∞1,2,10), (3,6,4), (11,14,12), (0,5,1,7), (8,13,9,15).

One can check that G = {G + i | 1 ≤ i ≤ 8} is a pyramidal solution to O P (33, 24). Note that G = G + 8 ∈ G; also, setting 
G ′ = G + 1 ∈ G , we have that,

G ′ = (∞,3,11) ∪ (4,7,5) ∪ (12,15,13) ∪ (1,6,2,8) ∪ (9,14,10,0)

and h(G ′) = 〈∞, 3〉 ∪ (12, 15, 13) ∪ (9, 14, 10, 0) is a halving of G ′ . Taking the matching M = {{∞, 2}, {1, 5}, {4, 6}}, one can 
check that

(1) cs(G \ M) = {3, 4} = cs(h(G ′) ∪ M), and
(2) h(G ′) ∪ M is a (1, 2)-graph.

Therefore, G satisfies the matching property.
To obtain a solution to O P (23, 34) satisfying the matching property we proceed in a similar way. Set V (K18) = Z16 ∪

{∞1, ∞2} and consider the 2-factor G of K18 defined below:

G = (∞1,2,∞2,10) ∪ (3,6,4) ∪ (11,14,12) ∪ (0,5,1,7) ∪ (8,13,9,15).
4
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One can check that G = {G + i | 1 ≤ i ≤ 8} is a pyramidal solution to O P (23, 34). As before G = G + 8 ∈ G , and letting 
G ′ = G + 1 ∈ G , we have that

G ′ = (∞,3,∞2,11) ∪ (4,7,5) ∪ (12,15,13) ∪ (1,6,2,8) ∪ (9,14,10,0)

and h(G ′) = 〈∞, 3〉 ∪ (12, 15, 13) ∪ (9, 14, 10, 0) is a halving of G ′ . One can check that G satisfies the matching property 
with respect to M , G and h(G ′).

We end this section building solutions to O P (x, 2�1, . . . , 2�u) that satisfies the matching property.

Theorem 2.6. There exists a pyramidal solution to O P (x, 2�1, . . . , 2�u), with u ≥ 1, that satisfies the matching property when either

(1) there exists a graceful labeling of 
[
� x−3

2 � | �1, . . . , �u

]
, or

(2) x ≥ 2B(L) + 3 with L = {�1, . . . , �u}.

Proof. Let x = 2k + ε , with ε ∈ {1, 2}, and set a = k + ∑u
i=1 �i . Note that a ≥ 2 since u ≥ 1, and � x−3

2 � = k − 1. Since 
Theorem 2.4 guarantees the existence of a graceful labeling of [k − 1 | �1, . . . , �u] whenever k − 1 ≥ B(L), that is, x ≥
2B(L) + 3, it is enough to prove the assertion under assumption 1. Therefore, let T = P ∪ R be a graceful labeling of 
[k − 1 | �1, . . . , �u], where P is a (k − 1)-path disjoint from the 2-regular graph R � [�1, . . . , �u]. Hence,

V (T ) = {0, . . . ,a − 1} and �T = {±1, . . . ,±(a − 1)}. (2.3)

Let p0 and p1 denote the end-vertices of P , let E be the graph with E(E) = {{∞1, p0}, {∞1, p0 + a}, {p1, p1 + a}}, and set 
C = P ∪ (P + a) ∪ E . Finally, set

G = T ∪ (T + a) ∪ E = R ∪ (R + a) ∪ C
By (2.3), V (G) = V (T ) ∪ V (T + a) ∪ {∞1} = {0, . . . , 2a − 1} ∪ {∞1}. Also, recalling that P and R are vertex-disjoint, it 
follows that P , R, P + a, R + a are vertex-disjoint, as well. Hence, C is a (2k + 1)-cycle, and G � [2k + 1, 2�1, . . . , 2�u].

From now on, we consider the vertices of G and its subgraphs modulo 2a, hence V (G) = Z2a ∪ {∞1}. By (2.3) and 
considering that a ∈ �E , we have that �G ⊃ �T ∪ �E ⊃Z2a \ {0}. Also, by construction, G +a = G . Therefore, Theorem 2.3
guarantees that G = {G + i | i ∈Z2a} is a 1-rotational solution to O P (2k + 1, 2�1, . . . , 2�u).

We now show that G satisfies the matching property. Let H = Q ∪ R be a halving of G obtained by choosing the 1-path 
Q in C so that

V (Q ) =
{

{∞1, p0} if 1 ≤ p0 ≤ a − 1,

{∞1, p0 + a} if p0 = 0.

Also, let M = Q ∪ N be a matching of H , where N consists of u edges belonging to the u distinct cycles of R . Recalling that 
V (R) ⊂ {0, . . . , a − 1}, it is not difficult to see that the matching N of R can be chosen so that 0 �∈ V (N), that is

V (N) ⊂ {1, . . . ,a − 1}.
Clearly, cs(G \ M) = {�1, . . . , �u}. Also, H ′ = H + (a + 1) is a halving of G ′ = G + (a + 1) = G + 1 which is a graph of G
distinct from G , since a > 1. Note that H ′ is the vertex-disjoint union of the 1-path Q ′ = Q + (a + 1) and the 2-regular 
graph R ′ = R + (a + 1), where

V (R ′) ⊂ {0} ∪ {a + 1, . . . ,2a − 1}.
Considering the vertex-sets of Q , N and R ′ , we conclude that M and R ′ are vertex-disjoint. Also, M ∪ Q ′ is either a 
matching or a linear forest. Hence M ∪ H ′ is a (1, 2)-graph with cs(M ∪ H ′) = cs(R ′) = {�1, . . . , �u}. This proves that G
satisfies the matching property with respect to M , the two distinct graphs G and G ′ , and the halving H ′ of G ′ , thus showing 
the assertion for ε = 1.

Consider the matching I containing the edges e∞ = {∞1, ∞2} and ei = {p1 + i, p1 + a + i}, for 0 ≤ i < a. Clearly, I is a 
1-factor of K2a+2, with V (K2a+2) = Z2a ∪ {∞1, ∞2}. Now let G∗ be the graph obtained from G by removing the edge e0

and then joining its end-vertices to ∞2, and set

G∗ = {G∗ + i | 0 ≤ i < a}.
Note that G∗ � [2k + 2, 2�1, . . . , 2�u]. Since each G∗ + i can be obtained from G + i by (performing the same operation of) 
inserting ∞2 along the edge ei ∈ E(G + i), it follows that G∗ is a 2-factorization of K2a+2 \ I into copies of G∗ . Hence, G∗
is a 2-pyramidal solution of O P (2k + 2, 2�1, . . . , 2�u). Since the operations performed to obtain G∗ do not involve edges of 
M , then G∗ satisfies the matching property, with respect to M , the two distinct graphs G∗ and (G ′)∗ , and the halving H ′ of 
(G ′)∗ , thus showing the assertion for ε = 2. �
5
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3. The proof of Theorem 1.1

The idea behind the proof of the main result (Theorem 1.1) turns out to be similar to the one that in [18] allows the 
authors to solve O P (x, μ�) whenever x is sufficiently large. We start with a solution of O P (x, 2�1, . . . , 2�u) of order m
(Theorem 2.6) and we decompose each of its factors into two (1, 2)-graphs (halvings) whose cycle structure is {�1, . . . , �u}. 
We have thus obtained a decomposition G of K ∗

m into (1, 2)-graphs having the same cycle structure, which by means of 
Corollary 2.2 extends to a solution of O P (y, �1, . . . , �u) (for a suitable y) whose order is ≡ 1 or 2 (mod 4) according to the 
parity of x (Theorem 3.1.(1)). To deal with the remaining classes of orders we need to suitably break one graph of G and 
redistribute its pieces between the remaining graphs of G without altering their cycle structure (Theorem 3.1.(2)). This can 
be done whenever the initial solution to O P (x, 2�1, . . . , 2�u) satisfies the matching property (Theorem 2.6).

Theorem 3.1. Let G be a solution to O P (x, 2�1, . . . , 2�u) (u ≥ 1) and let ε ≡ x (mod 2) with ε ∈ {1, 2}. Then O P (y, �1, . . . , �u) is 
solvable whenever the following conditions hold:

(1) y = 2x + 3 
∑u

β=1 �β − ε , or

(2) y = 2x + 3 
∑u

β=1 �β − ε − 2, provided that G satisfies (M).

Proof. Set x = 2k + ε (k ≥ 1) and a = k + ∑u
β=1 �β (�1, . . . , �u ≥ 3). Also, let G = {G1, . . . , Ga} be a solution to O P (2k +

ε, 2�1, . . . , 2�u), that is, a 2-factorization of K ∗
2a+ε where cs(Gα) = {2k + ε, 2�1, . . . , 2�u} for 1 ≤ α ≤ a.

For each α, let h(Gα) be a halving of Gα , and set

F2α−1 = h(Gα) and F2α = Gα \ h(Gα).

Clearly, F2α−1 and F2α decompose Gα , hence F = {Fi | 1 ≤ i ≤ 2a} is a (1, 2)-decomposition of K ∗
2a+ε , and by (2.2), each 

Fi is a (1, 2)-graph such that cs(Fi) = {�1, . . . , �u}. Since |F | = 2a, condition (2.1) holds, hence Corollary 2.2 guarantees the 
existence of a 2-factorization F+ = {F +

i | 1 ≤ i ≤ 2a} of K4a+ε where

Fi ⊂ F +
i , and |cs(F +

i )| = |cs(Fi)| + 1,

which imply that cs(F +
i ) = cs(Fi) ∪ {yi} = {�1, . . . , �u, y}, and

yi = 4a + ε −
∑
β

�β = 4k + 3
∑
β

�β + ε = 2x + 3
∑
β

�β − ε = y,

for 1 ≤ i ≤ 2a. In other words, F+ is a solution to O P (y, �1, . . . , �u), and this proves the first part of the theorem.
Now assume that G satisfies the matching property (M): without loss of generality, we can assume that there is a 

matching M of G1 such that

cs(G1 \ M) = {�1, . . . , �u} = cs(F3 ∪ M), and

F3 ∪ M is a (1,2)-graph.
(3.1)

Set F 2 = G1 \ M , F 3 = F3 ∪ M , and F i = Fi for 4 ≤ i ≤ 2a. By (3.2), and recalling that F1 and F2 decompose G1, and M ⊂ G1, 
it follows that

F = {
F i | 2 ≤ i ≤ 2a

} = (F \ {F1, F2, F3}) ∪ {
F 2, F 3

}
is a (1, 2)-decomposition of K2a+ε into b = 2a − 1 graphs. Considering that each F i contains at least one path-component of 
length ≥ 1 and a cycle-component of length ≥ 3, it follows that |E(F i)| ≥ 4 for 2 ≤ i ≤ 2a. Therefore, F satisfies condition 
(2.1), hence Corollary 2.2 guarantees the existence of a 2-factorization F+ =

{
F

+
i | 2 ≤ i ≤ 2a

}
of K2b+ε = K4a+ε−2 such that

Fi ⊂ F
+
i , and |cs(F

+
i )| = |cs(F i)| + 1,

for 2 ≤ i ≤ 2a. Reasoning as before, we conclude that F+
is a solution to O P (y, �1, . . . , �u) where

y = 4a + ε − 2 −
u∑

β=1

�β = 4k − 3
u∑

β=1

�β + ε − 2 = 2x − 3
u∑

β=1

�β − ε − 2,

and this completes the proof. �
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Example 3.2. Here, we follow the proof of Theorem 3.1, and by starting with a solution to O P (x, 2�1, 2�2), with x ∈ {3, 4}
and (�1, �2) = (3, 4), we construct a solution to O P (y, 3, 4), for y ∈ {24, 25, 26, 27}.

Let ε ∈ {1, 2} and take the solution G = {Gα | 1 ≤ α ≤ a = 8} of OP(2 + ε, 23, 24) considered in Example 2.5, where 
Gα = G + α, and G is the 2-regular graph defined below, according to the values of ε: if ε = 1, then

G = (∞1,2,10) ∪ (3,6,4) ∪ (11,14,12) ∪ (0,5,1,7) ∪ (8,13,9,15),

otherwise,

G = (∞1,2,∞2,10) ∪ (3,6,4) ∪ (11,14,12) ∪ (0,5,1,7) ∪ (8,13,9,15).

Note that G = G8 ∈ G . For 1 ≤ α ≤ 8, consider the halving

h(Gα) = 〈∞,2 + α〉 ∪ (11 + α,14 + α,12 + α) ∪ (8 + α,13 + α,9 + α,15 + α)

of Gα , and set F2α−1 = h(Gα) and F2α = Gα \ h(Gα). Clearly,

F = {Fi | 1 ≤ i ≤ 2a = 16}
is a (1, 2)-decomposition of K ∗

16+ε . Since b = |F | = 16, condition (2.1) holds, hence Corollary 2.2 guarantees the existence 
of a 2-factorization F+ = {F +

i | 1 ≤ i ≤ 16} of K4a+ε = K32+ε where each F +
i is a 2-regular graph of order 32 + ε containing 

Fi and exactly one more cycle than Fi , of length say yi . Since cs(Fi) = {3, 4}, we have that yi = 25 + ε and F+ is a solution 
to O P (25 + ε, 3, 4).

It is left to build a solution to O P (24, 3, 4) and O P (25, 3, 4). In Example 2.5, we showed that G satisfies the matching 
property (M): more precisely, by taking the matching M = {{∞, 2}, {1, 5}, {4, 6}} of G8 = G and recalling that each Gα

decomposes into F2α−1 and F2α (both halvings of Gα ), one can check that

cs(G8 \ M) = {3,4} = cs(F1 ∪ M), and

F1 ∪ M is a (1,2)-graph.
(3.2)

Recall that a = 8 and let F be the (1, 2)-decomposition of K2a+ε obtained from F by replacing F15 and F16 with G8 \M , and 
then replacing F1 with F1 ∪ M . By (3.2), we have that cs(F ) = {3, 4}, for every F ∈ F . Also, note that b = |F | = 2a − 1 = 15, 
and considering that |E(Fi)| ≥ 7, it follows that F satisfies condition (2.1). Hence, Corollary 2.2 guarantees the existence of 
a 2-factorization F+ =

{
F

+
i | 1 ≤ i ≤ 2a − 1 = 15

}
of K2b+ε = K30+ε where each Fi

+
is a 2-regular graph of order 30 + ε

containing F i and exactly one more cycle than F i , of length say yi . Since cs(Fi) = {3, 4}, we have that yi = 23 + ε and F+
is a solution to O P (23 + ε, 3, 4).

We are now ready to prove the main result of this paper, which we restate below.

Theorem 1.1. O P (y, �1, �2, . . . , �u) has an explicit solution whenever

y ≥ 3b + 24b0 + 28b1 + 119,

where b = ∑u
i=1 �i , b0 = 2|L0| (max(L0) + 3), b1 = 7|L1|−1(2 max(L1) + 1) and L = {�1, �2, . . . , �u}.

Proof. Since O P (y) and O P (y, �) are completely solved (see, [14, Section VI.12] and [12]), we can assume u ≥ 2. Consider 
the maps ε :N → {1, 2} and f :N →N defined as follows:

ε(y) ≡ y + b (mod 2), f (y) = y + ε(y) − 3b

2
+

{
0 if ε(y) ≡ y + b (mod 4),

1 otherwise.

Now set y0 = 3b + 24b0 + 28b1 + 119. Considering that y0 + b ≡ 3 (mod 4), then ε(y0) = 1, and it is not difficult to check 
that

min
y0≤y

f (y) = f (y0) = 12b0 + 14b1 + 61.

Hence, for every y ≥ y0, Theorem 2.6 constructs a pyramidal solution to O P ( f (y), 2�1, . . . , 2�u) that satisfies the matching 
property. Finally, Theorem 3.1 constructs a solution to O P (y, �1, . . . , �u). �
7
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4. Conclusions

In this paper we construct solutions to the Oberwolfach problem O P (F ) for every 2-regular graph F with a cycle 
whose length is greater than an explicit lower bound: Theorem 1.1. This result makes use of two results, Corollary 2.2 and 
Theorem 2.6 obtained via completely different methods. Corollary 2.2, proven in [18], extends (1, 2)-decompositions of K ∗

m
to 2-factorizations of K ∗

n (m < n) by making use of the very powerful amalgamation-detachment technique introduced by 
Hilton [17]. Theorem 2.6 constructs solutions to O P (x, 2�1, . . . , 2�u) satisfying the matching property. Here, the method 
used is based on constructing 2-factorizations with a pyramidal automorphism group.

The main idea behind the proof of Theorem 1.1 can be easily generalized as follows. We start with a solution F =
{F1, . . . , Fa} to O P (x, μ�1, . . . , μ�u) of order v . Then, we decompose each factor Fi of F into μ (1, 2)-graphs Fi,1, . . . , Fi,μ

with the same cycle structure: cs(Fi, j) = {�1, . . . , �u}. In other words, we separate out μ sets of cycles of length �1, . . . , �u

and then add to each set a portion of the x-cycle of F . We have obtained a (1, 2)-decomposition G of K ∗
v , and by applying 

Corollary 2.2, we construct a 2-factorization that solves O P (y, �1, . . . , �u) for a specific value of y. In other words, we have 
proven the following.

Theorem 4.1. If O P (x, μ�1, . . . , μ�u) of order 2w + ε , with ε ∈ {1, 2}, has a solution, then there is a solution to O P (y, �1, . . . , �u)

with y = 2wμ + ε − ∑
�i .

Note that the order of O P (y, �1, . . . , �u) is 2wμ + ε ≡ ε (mod 2μ). To deal with the remaining classes of orders 
(mod 2μ) it is enough to manipulate the intermediate (1, 2)-decomposition G , by decomposing i graphs in G (1 ≤ i < μ) 
into suitable linear forests that can then be added to the remaining graphs in G to form larger (1, 2)-graphs but with the 
same initial cycle structure. This way we end up producing a solution to

O P (y, �1, . . . , �u) with y = 2wμ + ε − 2i −
∑

�i . (4.1)

Succeeding to solve (4.1), for every 1 ≤ i < μ, would then lead to solve O P (y, �1, . . . , �u) for every y > f (x0, μ), provided 
that we can solve O P (x, μ�1, . . . , μ�u) for every x > x0. Note that f would be an increasing function of both x0 and μ. An 
explicit value for the lower bound x0 is given in [12] and it grows as μ increases. Therefore, the best possible lower bound 
on y, based on the results of [12], can be achieved when μ = 2. This is the reason why all constructions in this paper make 
use of solutions to O P (x, 2�1, . . . , 2�u).

We conclude with two tables showing the smallest value y , given by Theorem 1.1, that guarantees the solvability of 
O P (y, �1, �2) for every y ≥ y, when 3 ≤ �1 < �2 ≤ 8. We exclude the cases where �1 = �2 since for them a better lower 
bound, that is y = 5, is given in [24]. Further partial results can be found in [26].

y 672 2299 774 3089 876 3879 790 1017 908 1215 1026
�1 3 3 3 3 3 3 4 4 4 4 4
�2 4 5 6 7 8 9 5 6 7 8 9

y 892 3095 994 3885 1010 1221 1128 1112 3891 1230
�1 5 5 5 5 6 6 6 7 7 8
�2 6 7 8 9 7 8 9 8 9 9

An improvement to Theorem 1.1 containing a lower bound on y that is linear in the remaining u cycle lengths will be 
given in a paper in preparation [25].
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