Recycling processes of lithium-ion batteries used in electric and hybrid vehicles are widely studied today. To perform such recycling routes, it is necessary to know the composition of these batteries and their components. In this work, three pouch and three cylindrical LIBs were discharged, dismantled, and characterized, having their compositions known and quantified. The dismantling was performed using scissors, pliers, and a precision cutter equipment. The organic liquid electrolyte was quantified via mass loss after it evaporated at 60 degrees C for 24 h. The separators were analyzed using Fourier-transform infrared spectroscopy (FTIR), and the cathode and anode active materials were analyzed using a scanning electronic microscope coupled to an energy-dispersive spectroscope (SEM-EDS), X-ray diffraction (XDR), and energy-dispersive X-ray fluorescence spectrometry (EDXRF). All LIBs were identified by type (NCA, NMC 442, NMC 811, LCO, and two LFP batteries), and a preliminary economic evaluation was conducted to understand their potential economic value (in USD/t). Both results (characterization and preliminary economic evaluation) were considered to discuss the perspective of recycling towards a circular economy for end-of-life LIBs.

Characterization of Lithium-Ion Batteries from Recycling Perspective towards Circular Economy

Vaccari, Mentore
Supervision
;
Botelho Junior, Amilton Barbosa
2024-01-01

Abstract

Recycling processes of lithium-ion batteries used in electric and hybrid vehicles are widely studied today. To perform such recycling routes, it is necessary to know the composition of these batteries and their components. In this work, three pouch and three cylindrical LIBs were discharged, dismantled, and characterized, having their compositions known and quantified. The dismantling was performed using scissors, pliers, and a precision cutter equipment. The organic liquid electrolyte was quantified via mass loss after it evaporated at 60 degrees C for 24 h. The separators were analyzed using Fourier-transform infrared spectroscopy (FTIR), and the cathode and anode active materials were analyzed using a scanning electronic microscope coupled to an energy-dispersive spectroscope (SEM-EDS), X-ray diffraction (XDR), and energy-dispersive X-ray fluorescence spectrometry (EDXRF). All LIBs were identified by type (NCA, NMC 442, NMC 811, LCO, and two LFP batteries), and a preliminary economic evaluation was conducted to understand their potential economic value (in USD/t). Both results (characterization and preliminary economic evaluation) were considered to discuss the perspective of recycling towards a circular economy for end-of-life LIBs.
File in questo prodotto:
File Dimensione Formato  
324-Minerals (Lucas caratterizzazione LIBs).pdf

accesso aperto

Tipologia: Full Text
Licenza: Non specificato
Dimensione 7.93 MB
Formato Adobe PDF
7.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/612046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact