PURPOSE A semiautomated pipeline for the collection and curation of free-text and imaging real-world data (RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality assurance, and to showcase the potential of RWD for precision oncology.METHODS We collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records and was validated using process mining. The selected imaging examinations were segmented using an automatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated against expert-annotated ground-truth and clinical outcomes obtained from radiology reports.RESULTS The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range, 1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of image-derived data compared with single time point segmentation results (classification precision increased from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with the manually curated clinical reference (median survival of 286 v 336 days, P =.89).CONCLUSION We presented a general pipeline for the collection and curation of text- and image-based RWD, together with specific strategies to improve reliability. We showed that the resulting disease progression measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential to unlock large amounts of actionable retrospective real-world evidence from clinical records. (c) 2023 by American Society of Clinical Oncology

Semiautomated Pipeline to Quantify Tumor Evolution From Real-World Positron Emission Tomography/Computed Tomography Imaging

Gatta, Roberto;
2023-01-01

Abstract

PURPOSE A semiautomated pipeline for the collection and curation of free-text and imaging real-world data (RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality assurance, and to showcase the potential of RWD for precision oncology.METHODS We collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records and was validated using process mining. The selected imaging examinations were segmented using an automatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated against expert-annotated ground-truth and clinical outcomes obtained from radiology reports.RESULTS The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range, 1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of image-derived data compared with single time point segmentation results (classification precision increased from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with the manually curated clinical reference (median survival of 286 v 336 days, P =.89).CONCLUSION We presented a general pipeline for the collection and curation of text- and image-based RWD, together with specific strategies to improve reliability. We showed that the resulting disease progression measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential to unlock large amounts of actionable retrospective real-world evidence from clinical records. (c) 2023 by American Society of Clinical Oncology
File in questo prodotto:
File Dimensione Formato  
cci-7-e2200126.pdf

accesso aperto

Licenza: Non specificato
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/602286
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact