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abstract

PURPOSE A semiautomated pipeline for the collection and curation of free-text and imaging real-world data
(RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The
objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality
assurance, and to showcase the potential of RWD for precision oncology.

METHODSWe collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at
the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records
and was validated using process mining. The selected imaging examinations were segmented using an au-
tomatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification
across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated
against expert-annotated ground-truth and clinical outcomes obtained from radiology reports.

RESULTS The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range,
1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care
pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of
image-derived data compared with single time point segmentation results (classification precision increased
from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with
the manually curated clinical reference (median survival of 286 v 336 days, P = .89).

CONCLUSION We presented a general pipeline for the collection and curation of text- and image-based RWD,
together with specific strategies to improve reliability. We showed that the resulting disease progression
measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential
to unlock large amounts of actionable retrospective real-world evidence from clinical records.
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INTRODUCTION

The use of real-world data (RWD) to generate real-
world evidence (RWE) is attracting increasing interest
to complement evidence from randomized clinical
trials (RCTs). Although RCTs are generally considered
to provide the highest level of evidence, RWD analyses
allow the investigation of a larger and more hetero-
geneous patient population that better reflects the
diversity of diseases and treatment sequences in the
clinical setting.1-4 Increasingly personalized and indi-
vidually optimized treatment approaches demand
fine-grained assessment of efficacy and safety out-
comes according to multiple patient traits and re-
sponse patterns. Precision oncology, for example,
seeks to optimize cancer therapies by understanding

the patient-specific determinants of treatment re-
sponse. This requires large data sets of patient
characteristics, treatments, and outcome information
that enable reconstructing an individual’s clinical
trajectory and response pattern.

Immune checkpoint inhibitors (ICIs) represent a class of
immunotherapy treatments that have revolutionized the
treatment of metastatic cancers, such as melanoma.5

Despite the success of this treatment in a subgroup of
the patient population, a significant proportion of pa-
tients does not respond or experiences severe side
effects. Hence, a strong need remains to improve pa-
tient stratification and to better understand different
patterns of response,6-8 such as dissociate response
and pseudoprogression. Several studies investigated
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the efficacy and safety outcomes of ICIs in both RCTs and
real-world settings. They not only partially reported similar
results for both approaches9-14 but also observed differ-
ences, mainly indicating lower survival and more severe
adverse events in real-world populations.15-18 Acknowledg-
ing the role of RWE generated from such population-based
observational studies for assessing the generalizability of
RCT findings, both US Food and Drug Administration and
European Medicines Agency promote RWE to support
regulatory decision making.19,20

Despite its promise and the ubiquity of clinical RWD, RWE
is difficult to obtain. RWD, such as clinical or imaging data,
typically must undergo labor-intensive curation steps be-
fore they can be used in quantitative population analyses
and contribute to RWE. For example, RWD investigations of
the response patterns after treatment with ICIs require
structured access to (1) patient and treatment information
for cohort selection, (2) clinical covariates such as infor-
mation about blood, molecular, or genetic markers, and (3)
longitudinal information about tumor burden and char-
acteristics, ideally at the single-lesion resolution. Most of
this information is not readily available from the raw data
collected in clinical routine that consist of mainly un-
structured entries in electronic health records (EHRs)
and archived imaging data, both oriented toward clinical
use. To enable the use of EHR data for RWD studies,
information about patient characteristics, diagnoses, and
treatment history must be extracted and structured.
Similarly, imaging data need to be annotated to identify and
extract relevant information. In the context of oncologic
imaging for assessing the response to anticancer treat-
ments, quantitative information about the longitudinal
evolution of tumor characteristics and burden is needed.
This type of information is typically collected in RCTs using
criteria such as RECIST21 or positron emission tomography
(PET) Response Criteria in Solid Tumors.22 Both rely on
longitudinal measurements of tumor size or quantification
of tumor metabolism from imaging modalities such as

computed tomography (CT), PET, or a combination of both
(PET/CT). Although lesion-level quantitative PET/CT as-
sessment is also performed in clinical practice, criteria
such as RECIST are not directly used to assess patient
response or disease progression and the patient’s overall
tumor burden remains unquantified. Instead, radiologic
evidence is mostly described qualitatively in natural lan-
guage, thus providing insufficient details for subsequent
quantitative assessment of tumor response.23

Furthermore, the validity of RWE strongly relies on data
quality.1 As manual curation is very time-consuming, large-
scale population analyses require automated RWD pro-
cessing approaches. For such strategies to produce
actionable RWE, automation-induced inaccuracies must
be minimized, and any resulting errors need to be well-
characterized and considered when interpreting results. If
performed carefully, automated curation of textual clinical
data from EHRs can yield results comparable with manually
curated data, as recently demonstrated for textual data
from EHR in the context of population pharmacokinetics.24

This study provides further evidence for the feasibility of
automated RWD curation in the context of response as-
sessment to ICIs. Beginning by outlining the conceptual steps
involved in RWD extraction and curation for RWE creation, we
propose strategies for quality control and iterative refinement
of automatically curated text- and image-based RWD. In
particular, our work focuses on strategies for assessing the
suitability of automated longitudinal tumor burden mea-
surements for population-based analyses of tumor response
to ICIs. We demonstrate how longitudinal information can be
exploited to increase the accuracy of automated tumor
burden assessments. We further show that the resulting
information can serve as a substitute for manually curated
disease progression assessments at the population level.

METHODS

Figure 1 illustrates the key steps involved in semiautomated
collection and curation of clinical and imaging RWD for

CONTEXT

Key Objective
To demonstrate the successful implementation and identify associated challenges of a semiautomated real-world oncologic

data collection and analysis pipeline for systematic quantification of tumor lesion dynamics and clinical outcomes on the
basis of radiologic evidence from routine clinical practice.

Knowledge Generated
The proposed pipeline allows tapping into large amounts of retrospective real-world radiologic evidence on the evolution of

metastatic cancers, otherwise only accessible through manual inspection by highly trained experts. A wide variety of quality
assurance steps demonstrate the ability of such a method to provide accurate data for population-based studies.

Relevance
There is an increasing demand for real-world evidence to guide precision oncology. Rich and complex data such as clinical

positron emission tomography/computed tomography images can only be unlocked at large scale with appropriate au-
tomatic tools, such as the pipeline presented here.
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retrospective biomedical studies. These include (1) ex-
traction of RWD from hospital sources, (2) enrichment of
the raw data with information that enable identification
and retrieval of key data elements, (3) data selection on
the basis of this information, and (4) quality assurance to
assess data consistency. In practice, steps (2)-(4) form an
iterative data consolidation process that terminates when
the targeted consistency criteria have been met. Despite
differences in the specific methods and strategies, the
same conceptual sequence of steps applies to different
types of RWD, such as text-based information from EHRs
or clinical imaging data. Although quality assurance steps
are typically supported by methodological and technical
developments tailored to specific RWD use cases (local
clinical practice, information system, data formats, etc),
we focus here on generalizable aspects in the context of
text- and image-based RWD curation for oncologic
research.

Text Mining and Manual Annotation

Extraction of text-based RWD relied on a data aggregation
and semantic annotation system previously developed at
the Lausanne University Hospital (CHUV) Precision On-
cology Center and enriched during this project. This tool
helps data managers capture and structure clinical data
within a graphical user interface that integrates text mining
and natural language processing algorithms. The struc-
tured data (eg, treatment line or radiologic response) are
then quality-controlled by clinicians and complemented
with structured EHR data such as laboratory values and
radiotherapy administration data.

Cohort and imaging examination selection. The present
RWD exploration focuses on the first ICI line in patients
with metastatic cutaneous melanoma treated at CHUV
between April 2014 and February 2021. Usage of patient
data was approved by the local Ethics Committee (CER-VD
protocol No. 2019-00448) for patients who did not refuse
consent. For patients to be included in this cohort, at least
two PET/CT images between three months before ICI
initiation and one year after ICI discontinuation or the next
treatment line were required. In the following, we refer to
images acquired before and after first-line ICI start as
baseline and follow-up images, respectively. To prevent
confounders from obscuring real ICI effect evaluation,
localized treatments such as surgery or radiation therapy
were considered when selecting the appropriate imaging
examinations. We excluded baseline images collected
before and follow-up images collected after cancer-
related surgeries. Similarly, images collected after the
first radiotherapy session (excluding treatment for brain
metastases since not evaluable using PET/CT) were
omitted. For the selected cohort, demographic (eg, age,
sex) and clinical characteristics (eg, Eastern Cooperative
Oncology Group performance status), laboratory values,
and somatic mutations (ie, BRAF, NRAS) were collected.

Quality assurance. We verified and corrected the clinical
data set using multiple quality control mechanisms and by
involving clinicians to help validate the extracted data. In
particular, we used process mining, an important novel
methodology for visualization and deep analysis of event-
based data sets, as implemented in the pMineR R library.25
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FIG 1. Key steps involved in collection and curation of real-world clinical and imaging data. Semantic annotation of raw data enables querying for key
cohort selection criteria. Quality assurance assesses the internal consistency of the selected data set to detect and correct shortcomings of the
automated annotation process. The iterative data consolidation process of semantic annotation, data selection, and quality assurance terminates when
the targeted consistency criteria have beenmet. The same conceptual sequence of steps applies to the curation of different types of RWD, such as text-
based information from EHRs or clinical imaging data. EHR, electronic health record; PACS, Picture Archiving and Communication System; RWD, real-
world data.
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For this, an event log was generated, listing the sequence of
events for each patient. Then, a first-order Markov process
model was inferred, which allows quick inconsistency de-
tection by spotting aberrant paths in the process graphs.26

Curation of Imaging Data

Automated series identification and image segmentation.
To select the PET and CT images best suited for further
processing, we established rules that automatically iden-
tified the relevant acquisition protocols among all images
retrieved from the institutional Picture Archiving and
Communication System (PACS). Segmentation of the
selected PET/CT images relied on the artificial intelli-
gence–based PET-Assisted Reporting System (PARS)
prototype software (Siemens Medical Solutions USA Inc,
Knoxville, TN).27,28 PARS segments and identifies tumor

lesions from PET/CT in a two-step process: first, three-
dimensional regions of interest (ROIs) with elevated
Standardized Uptake Values (SUVs) are selected. These
are then classified into (1) benignROIs where elevated SUV
is physiologically expected (eg, metabolically active regions
such as the brain) and (2)malignant ROIs where high SUV
indicates the presence of metabolically active cancer cells.
In addition, each ROI is assigned to an anatomic location,
selected from a set of predefined body parts and organs.
The assignment of malignancy status and anatomic lo-
cation relies on convolutional neural networks trained on
lymphoma and lung cancer cases. For these indications,
PARS is reported to achieve an AUC of the receiver-
operating characteristic of .0.95 for lesion classification
and anatomic localization, and accuracies of 96% for body
part and 87% for organ localization.27
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FIG 2. Longitudinal follow-up of individual tumor lesions: (A) longitudinal mapping aims at establishing correspondences between the ROIs observed
and segmented across a patient’s imaging examinations. (B) ROIs observed at successive imaging time points are aligned by global and local
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Longitudinal lesion mapping. Additional processing is
needed to identify lesion correspondences across imaging
time points (Fig 2A). We developed an automated approach
for this longitudinal mapping task on the basis of the as-
sumption that ROIs repeatedly observed at the same lo-
cation likely correspond to the same tumor lesion. The
mapping started with a sequence of image registration
steps (Fig 2B). First, images were cropped to the patient’s
trunk, and the CT images corresponding to two subsequent
acquisition time points were spatially aligned by affine reg-
istration. Then, the subvolumes surrounding eachROI at time
points k and k + 1 were extracted, and deformable regis-
tration was performed between all pairs (ROIi,k, ROIj,k+1).
For each coregistered pair, we computed the spatial
overlap between ROIs. From the resulting information, a
graph data structure was built (Fig 2C), which enabled
identification of corresponding ROIs across imaging ex-
aminations and thus longitudinal follow-up of individual
tumor lesions (Fig 2D).

As longitudinal mapping was performed independent of
ROI malignancy status, the resulting longitudinal corre-
spondences may contain ROIs of benign and malignant
classification outcome (Fig 2D), a potential inconsistency
resulting from the uncertainty involved in the lesion clas-
sification process. However, we could leverage this infor-
mation to improve the malignancy status prediction for the
entire lesion trajectory by performing majority voting on the
basis of the malignancy status of its individual observations.

Lesion-level and patient-level performance evaluation.
Visual inspection of PET/CT segmentations revealed the
presence ofmisdetected ormisclassified lesions, as previously
reported.29 For example, catheters for 18F-labeled fluo-
rodeoxyglucose injection were frequently classified as ma-
lignant skin lesions by PARS because of their elevated SUV
and placement in proximity to the skin (Data Supplement). To
evaluate automatic segmentation and classification perfor-
mance, as well as the impact of longitudinal mapping and
voting on overall data quality, we established two benchmarks.

Lesion-level evaluation against expert-annotated ground
truth. Two independent reviews were performed by two
experienced nuclear medicine experts. First, one expert
reviewed PARS segmentation results of baseline and first
follow-up images for a group of 10 patients, balanced in
terms of patient clinical progression status (extracted from
clinical records). This data set served to provide an initial
estimate of segmentation quality and to adjust segmentation
parameters. A second review by the other expert aimed at
creating a representative ground-truth data set to allow
systematic evaluation of segmentation performance and
of the effect of various postprocessing approaches. For
this purpose, the automatically segmented tumor lesions
(n = 214) in about 5% of all imaging examinations (n = 24)
were reviewed to identify ROIs erroneously classified as
malignant. The examinations were randomly selected but

chosen to reflect the repartition of disease burden in the
overall population (quantified by the number of malignant
lesions, nmal): 50% with nmal ≤ 5, 25% with 5 , nmal ≤ 15,
and 25% with nmal . 15. We also investigated all imaging
examinations (n = 26) in which PARS had failed to detect the
presence of malignant lesions despite the radiology report
suggesting otherwise. On the basis of these expert reviews, we
evaluated (1) classification precision at the lesion level and (2)
the negative predictive value (NPV) at the examination level.

Patient-level evaluation against clinical outcome. To vali-
date our lesion selection approach at the patient level, we
evaluated the agreement between the temporal evolution of
image-derived total metabolic tumor volume (TMTV) and
clinical response. As clinical reference for patient response
to immunotherapy, we used an in-house score that di-
chotomizes the information from radiologic reports into
progressive disease (PD) or nonprogressive disease (NPD).
We compared the clinical response with results obtained
from automated image analysis in terms of TMTV change,
progression events derived from TMTV change, and
resulting progression-free survival (PFS). Differences in
PFS were assessed using the log-rank test.

RESULTS

The cohort selection steps described earlier resulted in a
cohort of 108 patients with melanoma (59% male) with a
median age of 68 years at baseline. About half of the patients
(n = 51) received ipilimumab and nivolumab concomitantly,
potentially followed by nivolumab maintenance (n = 22).
Baseline (median, 1; range, 1-2) and follow-up (median, 3;
range, 1-14) images were collected for each patient. Further
cohort characteristics are provided in the Data Supplement.
Of 509 eligible PET/CT imaging examinations, 446 exami-
nations were successfully retrieved from the institutional
PACS, correctly identified, and segmented for organs and
lesions.

Process Mining Confirms Clinical Data Quality and

Reveals Patient Pathways

Figure 3 illustrates process mining on a subgroup of patients
receiving pembrolizumab (n = 32). Depicting transitions
between various clinical events, the figure exemplifies the
diversity of care pathways encountered in a real-world set-
ting. Process mining enabled iterative correction of data
curation errors until self-consistency was achieved and
provided descriptive statistics, as detailed in Figure 3.

Longitudinal Mapping and Voting Increase Precision of

Malignancy Identification

Compared with expert-classified ground-truth data, we ob-
served a classification precision of 53% and aNPV of 80% for
PARS predictions, meaning that (1) only half of the lesions
identified as malignant by PARS were confirmed to be ma-
lignant on expert evaluation and (2) about 80% of all ex-
aminations in which PARS did not identify any malignant ROI
were confirmed to be free of tumor lesions. The low precision
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is further evidenced in the longitudinal evolution of tumor
burden (Fig 4A) where it results in erratic lesion trajectories.

A higher precision of 66% was achieved for the subset of
tumor lesions retained after application of longitudinal
mapping. Indeed, improved precision in this subset of
lesions (n = 85) is expected because longitudinal mapping
discards lesions that were observed at a single time point
only, which frequently correspond to incorrectly classified
regions of benign high SUV uptake.

More importantly, access to individual lesion trajectories
enabled a majority voting rule to be applied for determining
the most likely overall status of a lesion trajectory. By
reclassifying each involved observation accordingly, the
overall classification precision was further increased to

86%. Figure 5 illustrates these findings and details the
confusion matrix for this binary classification problem in
terms of ROI counts and volume. The Data Supplement
summarizes these findings in numerical form.

Combined with manual identification of truly benign
baseline images, this approach greatly improved the
consistency of our data set by removing outliers caused by
sporadic misclassification (Fig 4B). This plot also em-
phasized the large interindividual variability in tumor dy-
namics, which is expected in patients receiving ICIs.30,31

Image-Derived Tumor Dynamics Is Consistent With

Clinical Response Assessment

Figure 6A compares the relative change in TMTV de-
rived from imaging with the clinical progression status
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(PD, NPD) for these examinations. It distinguishes the
change in TMTV on the basis of raw segmentation re-
sults and longitudinal mapping and voting. Although the
observed median volume change is consistent with the
clinical progression status in most cases and only shows
little dependence on the processing approach, longi-
tudinal mapping reduces the variability of these distri-
butions. Longitudinal voting also resulted in improved
agreement between image-derived and clinical pro-
gression events with a median agreement of 85%
compared with a median agreement of 62% without this
postprocessing step (Fig 6B). Similarly, image-derived
progression events on the basis of raw and post-
processed segmentation results yielded different median
PFS times with a median of 175 and 286 days, respec-
tively (P , .01). Postprocessed segmentation results
closely reproduced the clinically derived PFS (median of
336 days, P = .89), whereas raw segmentation results did

not (P , .01; Fig 6C). These findings are summarized in
the Data Supplement.

DISCUSSION

Efficient data curation and quality control are central
challenges in RWD research. No standard approaches for
automatic RWD extraction and curation exist, and hence,
RWD curation is performed in a costly manual process to
increase data quality for RWD studies. Here, we argue for
the need for improved systems that can leverage RWD and
we present evidence for the feasibility of automated RWD
curation in the context of tumor response evaluation to ICIs.
We identified recurring steps in the collection and curation
process of text- and image-based RWD and proposed a
general framework and specific strategies for addressing
them. We showed that process mining can be integrated
in iterative data consolidation workflows to improve
data quality by providing easily interpretable synthetic
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representations of patient care pathways. Furthermore, we
demonstrated that suitable postprocessing enables off-the-
shelf PET/CT segmentation tools to quantify tumor burden
from real-world imaging data, in such a way that resulting
population-level outcome measures such as PFS match
those derived from time-consuming expert annotations.

This study highlights the role of data selection and the im-
portance of quality control metrics in automated RWD
curation: although RWD are intrinsically limited to the in-
formation routinely documented as part of clinical care,
automated collection and curation strategies may increase
the risk of missing or misinterpreting existing information in a
subset of patients for whom the extraction or semantic
annotation algorithms are not optimally adapted. Those

situations confront researchers with a trade-off between data
quality and final data set size. In the presented case, we used
an existing tool (PARS) for automatic tumor segmentation
from PET/CT imaging. Similar to other products, PARS is
designed to assist clinicians in identifying and contouring
tumor lesions and prioritizes high detection sensitivity to
avoid potentially malignant lesions being overlooked. In the
context of quantitative response assessment, however, the
software’s high detection sensitivity, resulting in a high
number of incorrectly detected tumors, introduced sub-
stantial noise in the data curation process. We mitigated the
impact of segmentation uncertainty by applying data se-
lection and consistency-improving schemes, thus increasing
data quality while reducing the size of our data set. The
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true negatives; TP, true positives.
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proposed postprocessing strategy on the basis of longitudinal
tracking of individual lesions enabled us to (1) identify the
ROIs that persist over time and (2) select those that were
consistently classified as malignant. Together, these criteria
allowed the high number of false positives to be reduced
significantly while preserving the overall treatment response
pattern. We monitored the impact of curation steps on
data quality and quantity to guide the iterative RWD con-
solidation process using three different types of assess-
ments: (1) cohort-level self-consistency with process mining;
(2) lesion-level performance evaluation against a small, but

representative expert-annotated ground-truth data set; and
(3) patient-level comparison of image-derived measurement
with clinical progression assessments. Our evaluation indi-
cates that the data resulting from automated RWD curation
can support population-based analyses, such as PFS esti-
mation and longitudinal response modeling.

While our study was based on 446 imaging examinations,
lesion-level assessment (2) could only be performed on a
subset of about 5% of these examinations. Although limited in
size, this subset was chosen to be representative in terms of
the number of identified lesions for patients with low,medium,
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and high tumor burden, respectively. Moreover, the fact that
the proposed data preparation strategy successfully repro-
duced clinical progression events in assessment (3) gives us
strong confidence in the generalizability of our findings.
Nonetheless, our pipeline should be validated in large-scale
future studies including a larger number of expert-reviewed
examinations of multiple cancer types, originating from
multiple centers and acquired on multiple imaging platforms.

We expect the combination of longitudinal lesion tracking
and consistency voting to have high potential for automated
RWD curation for population-based analyses of cancer
treatment outcomes, but the accuracy achievable with
current automatic segmentation tools may not suffice for
usage in clinical applications. Nevertheless, we believe that
automatic longitudinal tracking, in conjunction with im-
proved segmentation tools, will also have applications
beyond the population research context, for example, to
assist radiologists in follow-up examination assessments or
as a monitoring tool that helps oncologists review patient
cases on the basis of trends in disease evolution.

Although further development is needed, we believe that
semi- or fully automated approaches such as the ones
presented will ultimately help make RWD more accessible.
By combining clinical and imaging data, these approaches

pave the way for improved patient selection and treatment
recommendations in the era of personalized medicine. A
recent paper highlighted the potential of artificial intelli-
gence techniques combined with pharmacometrics to
guide treatment individualization in the specific context of
ICIs.32 Indeed, our curated tumor evolution data can be
analyzed using pharmacokinetic/pharmacodynamic mod-
eling and simulation approaches to capture patterns of
tumor responses to treatment.33,34 Furthermore, there is
growing interest in medical imaging data to guide therapies
via noninvasive image-based biomarkers. Following the
segmentation and longitudinal mapping steps, quantita-
tive image descriptors, so-called radiomics features, can
be computed straightforwardly for all identified tumors.
Such features were shown to be predictive markers of
overall survival in several cancer types35,36 and have the
potential to predict early response to ICIs in patients with
melanoma.37 Automatic extraction and curation of im-
aging RWD may thus provide important opportunities, not
only for the confirmation of RCT results in a real-world
setting but also for biomarker discovery. The proposed
framework can help collect and analyze data in a har-
monized way across different hospitals to assemble larger
cohorts for RWD multicentric studies.
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