High-grade glial tumors (HGGs) exhibit aggressive growth patterns and high recurrence rates. The prevailing treatment approach comprises radiation therapy (RT), chemotherapy (CMT), and surgical resection. Despite the progress made in traditional treatments, the outlook for patients with HGGs remains bleak. Tumor metabolism is emerging as a potential target for glioma therapies, a promising approach that harnesses the metabolism to target tumor cells. However, the efficacy of therapies targeting the metabolism of HGGs remains unclear, compelling a comprehensive review. This study aimed to assess the outcome of present trials on HGG therapies targeting metabolism. A comprehensive search of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted until November 2023. The search method used pertinent Medical Subject Heading (MeSH) terminologies and keywords referring to "high-grade gliomas", "metabolism", "target therapies", "monoclonal antibodies", "overall survival", and "progression-free survival". The review analyzed studies that focused on therapies targeting the metabolism of HGGs in human subjects. These studies included both randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs). Out of 284 articles identified, 23 trials met the inclusion criteria and were thoroughly analyzed. Phase II trials were the most numerous (62%). Targeted metabolic therapies were predominantly used for recurrent HGGs (67%). The most common targeted pathways were the vascular endothelial growth factor (VEGF, 43%), the human epidermal growth factor receptor (HER, 22%), the platelet-derived growth factor (PDGF, 17%), and the mammalian target of rapamycin (mTOR, 17%). In 39% of studies, the subject treatment was combined with CMT (22%), RT (4%), or both (13%). The median OS widely ranged from 4 to 26.3 months, while the median PFS ranged from 1.5 to 13 months. This systematic literature review offers a thorough exploration of the present state of metabolic therapies for HGGs. The multitude of targeted pathways underscores the intricate nature of addressing the metabolic aspects of these tumors. Despite existing challenges, these findings provide valuable insights, guiding future research endeavors. The results serve as a foundation for refining treatment strategies and enhancing patient outcomes within the complex landscape of HGGs.

A Systematic Review of the Metabolism of High-Grade Gliomas: Current Targeted Therapies and Future Perspectives

De Maria, Lucio;Panciani, Pier Paolo;Serioli, Simona;Fontanella, Marco Maria;Agosti, Edoardo
2024-01-01

Abstract

High-grade glial tumors (HGGs) exhibit aggressive growth patterns and high recurrence rates. The prevailing treatment approach comprises radiation therapy (RT), chemotherapy (CMT), and surgical resection. Despite the progress made in traditional treatments, the outlook for patients with HGGs remains bleak. Tumor metabolism is emerging as a potential target for glioma therapies, a promising approach that harnesses the metabolism to target tumor cells. However, the efficacy of therapies targeting the metabolism of HGGs remains unclear, compelling a comprehensive review. This study aimed to assess the outcome of present trials on HGG therapies targeting metabolism. A comprehensive search of PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted until November 2023. The search method used pertinent Medical Subject Heading (MeSH) terminologies and keywords referring to "high-grade gliomas", "metabolism", "target therapies", "monoclonal antibodies", "overall survival", and "progression-free survival". The review analyzed studies that focused on therapies targeting the metabolism of HGGs in human subjects. These studies included both randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs). Out of 284 articles identified, 23 trials met the inclusion criteria and were thoroughly analyzed. Phase II trials were the most numerous (62%). Targeted metabolic therapies were predominantly used for recurrent HGGs (67%). The most common targeted pathways were the vascular endothelial growth factor (VEGF, 43%), the human epidermal growth factor receptor (HER, 22%), the platelet-derived growth factor (PDGF, 17%), and the mammalian target of rapamycin (mTOR, 17%). In 39% of studies, the subject treatment was combined with CMT (22%), RT (4%), or both (13%). The median OS widely ranged from 4 to 26.3 months, while the median PFS ranged from 1.5 to 13 months. This systematic literature review offers a thorough exploration of the present state of metabolic therapies for HGGs. The multitude of targeted pathways underscores the intricate nature of addressing the metabolic aspects of these tumors. Despite existing challenges, these findings provide valuable insights, guiding future research endeavors. The results serve as a foundation for refining treatment strategies and enhancing patient outcomes within the complex landscape of HGGs.
File in questo prodotto:
File Dimensione Formato  
A Systematic Review of the Metabolism of High-Grade Gliomas Current Targeted Therapies and Future Perspectives.pdf

accesso aperto

Tipologia: Full Text
Licenza: Non specificato
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/591175
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact