We consider eigenvalues of the Pauli operator in R^3 embedded in the continuous spectrum. In our main result we prove the absence of such eigenvalues above a threshold which depends on the asymptotic behavior of the magnetic and electric field at infinity. We show moreover that the decay conditions on the magnetic and electric field are sharp. Analogous results are established for purely magnetic Dirac operators.

Absence of embedded eigenvalues of Pauli and Dirac operators

Kovarik, Hynek
2024-01-01

Abstract

We consider eigenvalues of the Pauli operator in R^3 embedded in the continuous spectrum. In our main result we prove the absence of such eigenvalues above a threshold which depends on the asymptotic behavior of the magnetic and electric field at infinity. We show moreover that the decay conditions on the magnetic and electric field are sharp. Analogous results are established for purely magnetic Dirac operators.
File in questo prodotto:
File Dimensione Formato  
HK-JFA.pdf

accesso aperto

Tipologia: Full Text
Licenza: Copyright dell'editore
Dimensione 559.84 kB
Formato Adobe PDF
559.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/589966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact