An Artificial Intelligence (AI) agent acting in an environment can perceive the environment through sensors and execute actions through actuators. Symbolic planning provides an agent with decision-making capabilities about the actions to execute for accomplishing tasks in the environment. For applying symbolic planning, an agent needs to know its symbolic state, and an abstract model of the environment dynamics. However, in the real world, an agent has low-level perceptions of the environment (e.g. its position given by a GPS sensor), rather than symbolic observations representing its current state. Furthermore, in many real-world scenarios, it is not feasible to provide an agent with a complete and correct model of the environment, e.g., when the environment is unknown a priori. The gap between the high-level representations, suitable for symbolic planning, and the low-level sensors and actuators, available in a real-world agent, can be bridged by integrating learning, planning, and acting. Firstly, an agent has to map its continuous perceptions into its current symbolic state, e.g. by detecting the set of objects and their properties from an RGB image provided by an onboard camera. Afterward, the agent has to build a model of the environment by interacting with the environment and observing the effects of the executed actions. Finally, the agent has to plan on the learned environment model and execute the symbolic actions through its actuators. We propose an architecture that integrates learning, planning, and acting. Our approach combines data-driven learning methods for building an environment model online with symbolic planning techniques for reasoning on the learned model. In particular, we focus on learning the environment model, from either continuous or symbolic observations, assuming the agent perceptual input is the complete and correct state of the environment, and the agent is able to execute symbolic actions in the environment. Afterward, we assume a partial model of the environment and the capability of mapping perceptions into noisy and incomplete symbolic states are given, and the agent has to exploit the environment model and its perception capabilities to perform tasks in unknown and partially observable environments. Then, we tackle the problem of online learning the mapping between continuous perceptions and symbolic states, assuming the agent is given a partial model of the environment and is able to execute symbolic actions in the real world. In our approach, we take advantage of learning methods for overcoming some of the simplifying assumptions of symbolic planning, such as the full observability of the environment, or the need of having a correct environment model. Similarly, we take advantage of symbolic planning techniques to enable an agent to autonomously gather relevant information online, which is necessary for data-driven learning methods. We experimentally show the effectiveness of our approach in simulated and complex environments, outperforming state-of-the-art methods. Finally, we empirically demonstrate the applicability of our approach in real environments, by conducting experiments on a real robot.

Integrating Planning and Learning for Agents Acting in Unknown Environments / Lamanna, Leonardo. - (2023 Apr 27).

Integrating Planning and Learning for Agents Acting in Unknown Environments

LAMANNA, LEONARDO
2023-04-27

Abstract

An Artificial Intelligence (AI) agent acting in an environment can perceive the environment through sensors and execute actions through actuators. Symbolic planning provides an agent with decision-making capabilities about the actions to execute for accomplishing tasks in the environment. For applying symbolic planning, an agent needs to know its symbolic state, and an abstract model of the environment dynamics. However, in the real world, an agent has low-level perceptions of the environment (e.g. its position given by a GPS sensor), rather than symbolic observations representing its current state. Furthermore, in many real-world scenarios, it is not feasible to provide an agent with a complete and correct model of the environment, e.g., when the environment is unknown a priori. The gap between the high-level representations, suitable for symbolic planning, and the low-level sensors and actuators, available in a real-world agent, can be bridged by integrating learning, planning, and acting. Firstly, an agent has to map its continuous perceptions into its current symbolic state, e.g. by detecting the set of objects and their properties from an RGB image provided by an onboard camera. Afterward, the agent has to build a model of the environment by interacting with the environment and observing the effects of the executed actions. Finally, the agent has to plan on the learned environment model and execute the symbolic actions through its actuators. We propose an architecture that integrates learning, planning, and acting. Our approach combines data-driven learning methods for building an environment model online with symbolic planning techniques for reasoning on the learned model. In particular, we focus on learning the environment model, from either continuous or symbolic observations, assuming the agent perceptual input is the complete and correct state of the environment, and the agent is able to execute symbolic actions in the environment. Afterward, we assume a partial model of the environment and the capability of mapping perceptions into noisy and incomplete symbolic states are given, and the agent has to exploit the environment model and its perception capabilities to perform tasks in unknown and partially observable environments. Then, we tackle the problem of online learning the mapping between continuous perceptions and symbolic states, assuming the agent is given a partial model of the environment and is able to execute symbolic actions in the real world. In our approach, we take advantage of learning methods for overcoming some of the simplifying assumptions of symbolic planning, such as the full observability of the environment, or the need of having a correct environment model. Similarly, we take advantage of symbolic planning techniques to enable an agent to autonomously gather relevant information online, which is necessary for data-driven learning methods. We experimentally show the effectiveness of our approach in simulated and complex environments, outperforming state-of-the-art methods. Finally, we empirically demonstrate the applicability of our approach in real environments, by conducting experiments on a real robot.
27-apr-2023
planning and learning; cognitive robotics; perception
Integrating Planning and Learning for Agents Acting in Unknown Environments / Lamanna, Leonardo. - (2023 Apr 27).
File in questo prodotto:
File Dimensione Formato  
PhD_thesis_LeonardoLamanna.pdf

accesso aperto

Descrizione: PhD thesis
Tipologia: Tesi di dottorato
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 19.32 MB
Formato Adobe PDF
19.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/585805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact