
Integrating Planning and
Learning for Agents Acting in

Unknown Environments

Ph.D. in Information Engineering

Department of Information Engineering
University of Brescia

Data and Knowledge Management Unit
Fondazione Bruno Kessler

XXXV°cycle 2019–2022

Advisor:
Prof. Alfonso Emilio Gerevini

Co-Advisor:
Dr. Paolo Traverso

Ph.D. Candidate:
Leonardo Lamanna

Contents

1 Introduction 1

2 Background 7
2.1 Classical Planning . 7

2.1.1 Solving Planning Problems 9
2.1.2 Domain Examples . 11

2.2 Supervised Learning . 12
2.2.1 Artificial Neural Networks 13

2.3 Reinforcement Learning . 19

3 Related work 26
3.1 Perceptual Anchoring . 26
3.2 Action model learning . 28

3.2.1 Offline approaches . 28
3.2.2 Online approaches . 30

3.3 Planning in a latent space . 31
3.4 Planning by Deep Reinforcement Learning 32

3.4.1 Model-free . 33
3.4.2 Model-based . 34

3.5 Symbolic Planning and Deep Reinforcement Learning 35

4 Learning Planning Domains from Sensor Data 37
4.1 The Plan-Act-Learn Problem . 38
4.2 Solving the PAL Problem . 40
4.3 Learning the Perception Function 43
4.4 PAL example . 44
4.5 Experimental Analysis . 45

4.5.1 Benchmarks and simulators 46
4.5.2 Experimental results . 47

5 Online Learning of Action Models 51
5.1 Action Model Learning Problem 52
5.2 OLAM Algorithm . 53
5.3 OLAM Example . 57

5.4 Termination, Correctness, and Integrity 58
5.5 Experimental Analysis . 63

5.5.1 Evaluation on IPC domains 63
5.5.2 Comparison with offline learning 66

6 Online Grounding of Action Models 68
6.1 The Ogamus Framework . 69
6.2 The Ogamus Algorithm . 71
6.3 Experimental Analysis . 77

6.3.1 Evaluating Ogamus . 77
6.3.2 Comparison on Object Goal Navigation 81
6.3.3 Error Analysis . 83

7 Planning for Learning Object Properties 85
7.1 Preliminaries and Problem Definition 86
7.2 The Proposed Method . 88

7.2.1 Extended Planning Domain for Learning 89
7.3 Experimental Analysis . 92

7.3.1 Experiments in Simulated Environments 93
7.3.2 Real World Demonstrator 96

8 Online Learning of Reusable Abstract Models for Object Goal
Navigation 97
8.1 Object Goal Navigation . 99
8.2 Method . 101

8.2.1 Abstract Model Reuse . 102
8.3 Experimental Analysis . 103

8.3.1 Implementation Details 103
8.3.2 Reusing abstract models 104
8.3.3 Effects of Knowledge Accumulation 105
8.3.4 Semantic Maps and Abstract Models 106
8.3.5 Limitations and Failure Analysis 107
8.3.6 Qualitative examples . 109

9 Conclusions and Future Works 110

Acknowledgements 111

Bibliography 112

Abstract

An Artificial Intelligence (AI) agent acting in an environment can perceive the
environment through sensors and execute actions through actuators. Symbolic
planning provides an agent with decision-making capabilities about the actions
to execute for accomplishing tasks in the environment. For applying symbolic
planning, an agent needs to know its symbolic state, and an abstract model of
the environment dynamics. However, in the real world, an agent has low-level
perceptions of the environment (e.g. its position given by a GPS sensor), rather
than symbolic observations representing its current state. Furthermore, in many
real-world scenarios, it is not feasible to provide an agent with a complete and
correct model of the environment, e.g., when the environment is unknown a
priori. The gap between the high-level representations, suitable for symbolic
planning, and the low-level sensors and actuators, available in a real-world agent,
can be bridged by integrating learning, planning, and acting.

Firstly, an agent has to map its continuous perceptions into its current sym-
bolic state, e.g. by detecting the set of objects and their properties from an
RGB image provided by an onboard camera. Afterward, the agent has to build
a model of the environment by interacting with the environment and observing
the effects of the executed actions. Finally, the agent has to plan on the learned
environment model and execute the symbolic actions through its actuators.

We propose an architecture that integrates learning, planning, and acting.
Our approach combines data-driven learning methods for building an environ-
ment model online with symbolic planning techniques for reasoning on the
learned model. In particular, we focus on learning the environment model,
from either continuous or symbolic observations, assuming the agent perceptual
input is the complete and correct state of the environment, and the agent is
able to execute symbolic actions in the environment. Afterward, we assume
a partial model of the environment and the capability of mapping perceptions
into noisy and incomplete symbolic states are given, and the agent has to ex-
ploit the environment model and its perception capabilities to perform tasks in
unknown and partially observable environments. Then, we tackle the problem
of online learning the mapping between continuous perceptions and symbolic
states, assuming the agent is given a partial model of the environment and is
able to execute symbolic actions in the real world.

In our approach, we take advantage of learning methods for overcoming
some of the simplifying assumptions of symbolic planning, such as the full ob-
servability of the environment, or the need of having a correct environment
model. Similarly, we take advantage of symbolic planning techniques to enable
an agent to autonomously gather relevant information online, which is necessary
for data-driven learning methods. We experimentally show the effectiveness of
our approach in simulated and complex environments, outperforming state-of-
the-art methods. Finally, we empirically demonstrate the applicability of our
approach in real environments, by conducting experiments on a real robot.

Abstract

Un agente artificiale intelligente percepisce il proprio ambiente tramite sen-
sori ed esegue azioni nell’ambiente tramite attuatori. La pianificazione sim-
bolica permette agli agenti di decidere che azioni compiere al fine di eseguire
delle attivita’. Per utilizzare la pianificazione simbolica, un agente artificiale
deve conoscere il proprio stato simbolico e un modello astratto della dinamica
dell’ambiente. Tuttavia, nel mondo reale, un agente ha delle percezioni di basso
livello dell’ambiente (es. la propria posizione ritornata da un sensore GPS),
piuttosto che osservazioni simboliche che descrivono il suo stato. Inoltre, in vari
scenari reali, non e’ possibile fornire a un agente un modello corretto e completo
dell’ambiente, per esempio quando l’ambiente non e’ noto a priori. Il divario tra
rappresentazioni di alto livello, adatte per la pianificazione simbolica, e i sen-
sori e attuatori di basso livello, disponibili in agenti artificiali reali, puo’ essere
colmato integrando apprendimento, pianificazione ed esecuzione.

Inizialmente, un agente deve mappare le percezioni continue in uno stato sim-
bolico, per esempio riconoscendo gli oggetti e le relative proprieta’ in un’immagine
RGB fornita da una telecamera. Successivamente, l’agente deve costruire un
modello dell’ambiente, interagendo con l’ambiente e osservando gli effetti delle
proprie azioni. Infine, l’agente deve pianificare con il modello imparato, ed
eseguire le azioni simboliche tramite i propri attuatori.

Proponiamo un’architettura the integra apprendimento, pianificazione ed es-
ecuzione. Il nostro approccio combina metodi di apprendimento guidati dai dati,
per costruire un modello dell’ambiente in tempo reale, con tecniche di pianifi-
cazione simbolica per ragionare sul modello imparato. In particolare, ci focalizzi-
amo sull’apprendimento del modello dell’ambiente, sia da osservazioni continue
che simboliche, assumendo che l’agente percepisca lo stato corretto e completo
dell’ambiente, e che sia in grado di eseguire azioni simboliche nell’ambiente. Suc-
cessivamente, assumiamo che siano dati un modello parziale dell’ambiente e la
capacita’ di mappare le percezioni in stati parzialmente corretti e incompleti, e
l’agente deve sfruttare il modello dell’ambiente e la propria capacita’ percettiva
per assolvere dei compiti in ambienti sconosciuti a parzialmente osservabili. In-
oltre, consideriamo il problema di imparare come mappare le percezioni continue
in stati simbolici, assumendo che l’agente sia provvisto di un modello parziale
dell’ambiente, e che sia in grado di eseguire azioni simboliche nel mondo reale.

Nel nostro approccio, sfruttiamo metodi di apprendimento per superare
alcune assunzioni simplificative della pianificazione simbolica, come la com-
pleta osservabilita’ dell’ambiente, o la necessita’ di avere un modello corretto
dell’ambiente. Analogamente, sfruttiamo tecniche di pianificazione simbolica
per permettere a un agente di acquisire autonomamente i dati necessari per ap-
plicare i metodi di apprendimento. Mostriamo sperimentalmente l’efficacia del
nostro approccio in ambienti simulati e complessi, ottenendo risultati migliori
di metodi stato dell’arte. Infine, dimostriamo empiricamente l’applicabilita’ del
nostro approccio in ambienti reale, conducendo esperimenti su un robot reale.

Chapter 1

Introduction

An Artificial Intelligence (AI) agent is anything that can be viewed as perceiv-
ing its environment through sensors and acting upon that environment through
actuators [98]. For example, a robotic agent provided with an on-board RGB
camera as a sensor, and wheel actuators for navigation. The general architecture
of an AI agent is shown in Figure 1.1. An AI agent should be able to operate in
unknown environments, e.g., a robotic agent designed for helping elderly people
should be able to accomplish household tasks in different, a priori unknown,
houses. When an agent is required to perform tasks in a known environment,
it knows the actions that it can execute, and how the actions change the envi-
ronment state. Therefore, it can plan the actions to execute for accomplishing
tasks. However, when the environment is unknown, an agent has to learn how
the environment works in order to make good decisions. The complexity of the
agent environment depends on many factors (e.g. partially observable environ-
ments, multi-agent environments, dynamic environments, etc.). In particular,
we focus on: (i) unknown environments, since the agent may have no knowledge
about the action effects in the environment; (ii) continuous environments, given
that perceptual input of the agent is provided by its continuous sensors (e.g. the
agent position given by a GPS sensor); (iii) partially observable environments,
where the agent has a partial view of the environment, e.g. the image pro-
vided by an on-board RGB camera; (iv) single-agent environment, since we do
not deal with the cooperation or competition of multiple agents simultaneously
operating in the same environment.

Enabling an agent to operate in unknown environments can be achieved
by integrating learning, planning, and acting. On the learning side, an agent
has to build and revise a model of the unknown environment where it finds
itself in. Generally, a model of the environment can be obtained by combining
commonsense input knowledge with the knowledge acquired by the agent while
perceiving and interacting with the environment. The learned model should
be suitable for reasoning. In particular, we focus on symbolic planning [39],
which is a specific type of reasoning. Symbolic planning provides agents with
decision-making capabilities about the actions to execute for achieving goals [98].

1

CHAPTER 1. INTRODUCTION

Sensors ? Actuators

Agent

Environment
ActionPerception

Figure 1.1: Agent perceiving the environment through sensors and executing
actions in the environment through actuators. The agent behaviour is repre-
sented by the question mark box, which takes as input a perception and returns
an action to execute.

Symbolic planning techniques are based on abstract and most often discrete
representations of the world, where the agents perform their actions, usually
called planning domains. A good planning domain should abstract away the
details of the world state which are irrelevant to the achievement of the agent’s
goals. Finally, an agent need to be able to execute, through its actuators, the
actions decided by means of symbolic planning.

We propose an agent architecture (Figure 1.2) that wraps up the learning,
planning, and acting components, for an agent accomplishing tasks in an un-
known environment. The agent executes low-level actions in the environment
through its actuators, and perceives the environment through its sensors. We
refer to the perceptual input of the agent as perception. The perception function
maps a perception into symbols (i.e. objects and ground atoms) and anchors
attributes to the objects (e.g. position, size, visual features, etc.). The output
of the perception function is used to build and update the environment model,
which is composed of a symbolic model of the environment, a symbolic state
of the agent, and the anchors associated with the symbolic state objects. The
symbolic model of the environment describes the environment dynamics, i.e.,
how the environment evolves when the agent executes actions. The symbolic
model can be represented extensionally (e.g. by a finite state machine that de-
scribes the set of environment states and the transitions between states caused
by actions) or intensionally by means of a planning language. A widely adopted
planning language is the Planning Domain Definition Language (PDDL) [81]),
which is a specification of the actions executable by the agent. In particular, in
a PDDL model, each action is specified by its name, input parameters, precon-
ditions, and effects. The preconditions are atoms that must be true (or false)
in order to successfully execute the action. Similarly, the effects are atoms that
become true (or false) after executing the action. The planner takes as input
a planning problem composed of: a symbolic model of the environment, an
agent symbolic state, and a goal specified by a first-order formula. The planner
outputs a plan, if it exists, that is a solution to the planning problem. The
executor takes as input the first symbolic action of the plan, returned by the

2

CHAPTER 1. INTRODUCTION

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 1.2: Agent environment interface.

planner module, and compiles the symbolic action into a sequence of low-level
actions executable by the agent’s actuators.

Learning the Perception Function A common assumption in symbolic
planning is that the agent perceives the world at the symbolic level, e.g. it does
not perceive its position through a GPS sensor, but directly perceives the fact
that it is at a particular location, such as “my location is Rome”. Due to this
assumption, a fundamental problem arises when an agent wants to apply sym-
bolic planning in a real-world scenario: how an agent can link the real-world
(low-level) observations given by its sensors with the symbolic (high-level) ob-
servations used for applying symbolic planning. A possible resolution approach
for the problem above consists of learning the mapping between continuous and
symbolic observations. We refer to the function mapping perceptions into sym-
bols as the perception function. In the AI literature, there is a research area
studying this mapping between symbols and their continuous features, which
is called perceptual anchoring [21]. In particular, perceptual anchoring is the
process of creating and maintaining the correspondence between symbols and
perceptions that refer to the same physical objects. The anchoring problem as
defined in [21] applies a top-down approach: anchors are created starting from
symbols and associating to symbols their perceptions. For example, the sym-
bol “box0” is associated with the anchor representing its image. The top-down
perceptual anchoring can be seen as the symbol grounding problem restricted
to physical objects. A different approach, i.e. bottom-up, has been applied
in [61, 77], where they start from perceptions and link them to symbols. For
example, a new anchor is created from an image and associated with a new
random symbol. In this work, we aim to learn a perception function ρ : X → S
where X is the perception space (e.g. the RGB images given by a camera) and
S is the symbolic state space. For example, the perception space could be the
set of RGB images given by a camera, and a symbolic state may be the set of
objects detected in each image together with the predicates representing object
properties (e.g. an object box0 and the positive literal small(box0)).

An offline and modular approach for solving the problem of learning the
perception function in complex environments (e.g. a kitchen where a robotic
agent has to perform household tasks) is by training deep learning models that
take as input RGB images and return the types and bounding boxes of the
objects detected in the input RGB image. Afterward, other criteria can be used

3

CHAPTER 1. INTRODUCTION

for determining the properties of the detected objects, e.g. the estimation of the
distance between the agent and an object can be used for determining whether
the object is close to the agent. These approaches have the limitation that it is
difficult to combine them with high-level commonsense knowledge, e.g. through
neuro-symbolic reasoning that takes into account logical constraints about an
object state.

An alternative approach for learning the perception function consists of end-
to-end training of deep learning models that take as input the perceived state
(e.g. the RGB image of the board of a game) and encode the perception into
a vector of latent binary features. In particular, the latent binary features can
be seen as symbolic variables describing a symbolic latent state. This approach
has some limitations: (i) it requires perceptions of the fully observable state,
since it fixes a priori the size of the state space, i.e. the length of the latent
features vector; (ii) the learned representation of a state, albeit being symbolic,
is not explainable, which can be a limitation when such a representation needs
to be intelligible to humans (e.g. for communicating with humans). The two
approaches proposed above are offline, since they require a dataset. A still
open challenge is how to learn the perception function online, by interacting
with the environment. For example, consider a deep learning model predicting
the property isOpen for objects of type box. Instead of providing an agent
with a pre-trained deep learning model, an agent should interact with a box
(e.g. by opening/closing it) in order to learn what an open/closed box looks
like, and consequently learn the perception function associated with the isOpen
predicate online.

Learning to Act The problem of filling the gap between the symbolic level
and the perception level is not only related to the construction of the agent’s
symbolic state. Indeed, when a robotic agent computes a symbolic plan, i.e.
a sequence of symbolic actions, it cannot directly execute the symbolic actions
through its actuators. For example, consider a robotic agent that can execute
some navigation actions such as moving forward of a given number of centimeters
or rotating of a given number of degrees. Suppose that the agent’s goal is to be
close to an object of type box, and that the symbolic plan consists of the single
high-level action goCloseTo(box0). The agent cannot directly execute the
action goCloseTo(box0), but it rather needs to compile it into a sequence
of low-level navigation actions executable by its actuators. Similarly to the
perception function ρ, we define an action function α : A → C, that associates
to each high-level action in A a sequence of low-level actions in C. Learning the
action function is very challenging when dealing with robotic agents that have
to act in the real world. The majority of existing approaches tackle this problem
by using Reinforcement Learning (RL) or hard-coded solutions (see Section 3.5).
In this work, we do not focus on the problem of learning the action function
online.

4

CHAPTER 1. INTRODUCTION

Learning the Environment Model Symbolic planning approaches require
an agent to be provided with a symbolic model of the environment dynamics,
describing how the environment state evolves when the agent executes actions.
When specified in PDDL, such symbolic models are also referred to as PDDL
action models. The manual specification of the action models is often an inaccu-
rate, time-consuming, and error-prone task. The automated learning of action
models is widely recognized as a key and compelling challenge to overcome these
difficulties.

There is a wide variety of approaches (see Section 3.2) tackling the problem
of learning action models offline, i.e. from an input set of plan traces. A plan
trace is a trajectory in the state space generated by executing a plan, and is
composed of the visited states and executed actions in the trajectory. These
approaches have different assumptions on the correctness and observability of
states and actions in the trajectory.

Few approaches focus on the problem of learning action models online, while
executing actions. In the online setting, there is the additional complexity of
generating the plan trace. The actions executed for generating a plan trace can
be selected randomly, or by an oracle (e.g. a human). Alternatively, they can
be selected by the planning itself, i.e., by solving a planning problem where the
goal consists of learning a specific part of the action model (e.g. the effects of
an action).

Example 1 (Planning, acting and learning agent). A robotic agent equipped
with an RGB-D onboard camera and a position sensor is placed in an unknown
kitchen and has to put an apple into a box. The agent perceives the RGB-D
image of its egocentric view, and detects the objects in the image and their prop-
erties through its perception function, which can be a pre-trained deep learning
model. The anchors of each object are their visual features extracted from a con-
volutional neural network that takes as input the RGB image cropped with the
object bounding box, and its position which is estimated from the depth camera
cropped with the object bounding box. The objects and their properties are used
to update the symbolic state of the environment model. The object anchors are
used to extend and update the set of anchors in the environment model. In this
example, we assume the agent is provided with an input symbolic model of the
environment, i.e. a planning domain specified in PDDL. After the environment
model has been updated, the agent plans to achieve to goal of putting an apple
into a box, then executes the actions in the plan until the goal is achieved. For
example, if the first action of the plan is goCloseTo(box0), the agent uses
a path planner for computing a path from its current position to the estimated
position of box0 in the topological map of the environment built online from
the depth image while navigating into the environment. Finally, the path plan
is translated into a sequence of low-level navigation operations such as moving
forward of 20cm or rotating right of 90 degrees.

The objective of this work is to provide a general architecture of a plan-
ning, learning, and acting agent, and propose solutions to some of the problems
arising from the integration of planning, learning, and acting. Each problem

5

CHAPTER 1. INTRODUCTION

assumes that some planning, learning, and acting components are given and
other components need to be learned. For example, the action model learning
problem assumes that the agent is provided with a perfect perception function
and executor components are given, i.e., the agent directly perceives the correct
symbolic state of the environment, and is able to execute symbolic actions in
the environment.

Specifically, we propose solutions to the following research questions:

– How can an AI agent build an extensional representation of a planning
domain from sensory data?

– How can an AI agent autonomously generate informative plan traces for
learning an action model online?

– How can a robotic agent exploit an input action model for performing tasks
in unknown and complex environments?

– How can a robotic agent reuse the previously acquired knowledge for solving
a specific task in a particular environment?

– How can a robotic agent plan to learn the perception function for recog-
nizing object properties?

We evaluate the effectiveness of our approach for learning the environment
model by comparing the learned models with the ground truth ones. Whereas
the learned perception functions are evaluated by means of standard machine
learning metrics, i.e. the precision and recall, computed on a test set of percep-
tions. Finally, the agent’s capability of performing tasks is measured by taking
into account whether the task is successfully executed, and the efficiency of its
execution in terms of number of executed actions.

This work is organized as follows. Chapter 2 introduces some necessary
background about symbolic planning, artificial neural networks, and RL; Chap-
ter 3 deals with the related work. Chapter 4 addresses the problem of learning
an extensional representation of a planning domain from sensory data. Chap-
ter 5 describes a method for learning action models online in fully observable
environments. Chapter 6 proposes a framework for agents that incrementally
instantiate a symbolic planning domain, by planning, acting, and sensing, in an
unknown environment. Chapter 7 addresses the challenge of planning for learn-
ing the perceptual capabilities of the agent. Chapter 8.2 tackles the problem of
acquiring knowledge about unknown environments and reusing it to incremen-
tally improve the agent performance. Finally, Chapter 9 gives conclusions and
future directions of still open research challenges arising from the integration of
planning, acting, and learning.

6

Chapter 2

Background

To apply symbolic planning, an agent needs to be provided with a planning
problem, composed by: (i) a planning domain, which specifies the actions that
can be executed by the agent; (ii) the agent’s initial state; and (iii) a first-
order goal formula representing the agent’s goal. Generally, a goal formula
identifies a set of goal states. The solution to the planning problem is a plan,
i.e. a sequence of actions, that leads the agent from its initial state to a goal
state. The language widely adopted to specify symbolic planning problems and
domains is the Planning Domain Definition Language (PDDL) [81]. There are
several kinds of planning (e.g. temporal planning, numerical planning, etc.). In
this work, we focus on classical planning [39], where the agent’s state is a set of
boolean atoms, which become true or false after executing actions.

2.1 Classical Planning

Classical planning is a basic type of AI planning, where: (i) the agent state is
represented by a set of propositional atoms (factored representation); (ii) states
are fully observable, i.e. the truth value of all atoms is known in every agent
state; (iii) the environment is deterministic, i.e. an action always has the same
effects on the environment; (iv) the environment can change only due to actions
executed by the agent.

Example 2. Consider an agent capable to move blocks on a table. Suppose
that there is a table table0 with two blocks {block0, block1} on top of table0. The
agent state can be represented as the set s of ground atoms {on(block0, table0),
on(block1, table0),¬on(block0, block1),¬on(block1, block0)}, which is a full de-
scription of the environment state, i.e. the position of each block is fully observ-
able. Whenever the agent stack block1 on top of block0 by executing the action
stack(block1, block0) in s, then the new state s′ of the environment becomes
{on(block1, block0), on(block0, table0),¬on(block0, block1),¬on(block1, table0)},
since the environment is deterministic. For example, it is assumed that block1
cannot fall down while being stacked on top of block0. Moreover, since the agent

7

CHAPTER 2. BACKGROUND

is the only one responsible for changes of the environment, it is assumed that
no one other than the agent can move the blocks.

The PDDL specification of a classical planning problem is compliant with
the so-called “database semantic assumption”: (i) all literals that do not ap-
pear in the state description are negatives (aka closed-world assumption); (ii)
each object (or constant) is uniquely identified by its name (aka unique name
assumption).

Example 3. In Example 2, according to the closed-world assumption, the state
s can be specified by omitting the negative literals, i.e. s = {on(block0, table0),
on(block1, table0)}. Moreover, for the unique name assumption, the name table0
uniquely identifies the table, similarly block0 and block1.

Let P be a set of first-order predicates, O a set of operators, V a set of
variables (also called parameters), and C a set of constants. Predicates and
operators of arity n are called n-ary predicates and n-ary operators. We use
P(V) to denote the set of atoms P (x1, . . . , xm), where xi ∈ V and P ∈ P. For
instance, if P contains the single binary predicate on, and V = ⟨x1, x2, x3⟩.
Then, P(V) = {on(xi, xj) | 1 ≤ i, j ≤ 3}. Similarly, we use P(C) to denote the
set of atoms obtained by grounding P(V) with the constants in C.

Definition 1 (Lifted action schema). A lifted action schema for an n-ary opera-
tor name op ∈ O on the set of predicates P is a tuple

〈
par(op), pre(op), eff+(op), eff−(op)

〉
,

where par(op) ⊆ V, pre(op), eff+(op), and eff−(op) are three sets of atoms on
P(par(op)).

Essentially, pre(op), eff+(op), and eff−(op) represent the preconditions, positive,
and negative effects of operator op. Without loss of generality, we assume that
operators have no negative precondition.

Definition 2 (Ground action). The ground action a = op(c1, . . . , cn) of an n-
ary operator name op ∈ O w.r.t. the constants c1, . . . , cn is the triple ⟨pre(a), eff+(a), eff−(a)⟩,
where pre(a) (resp. eff+(a), eff−(a)) is obtained by replacing the i-th parameter
of par(op) in pre(op) (resp. eff+(op), eff−(op)) with ci.

We use the term lifted, as the opposite of grounded, to refer to expressions and
actions where constants have been replaced with parameters.

Definition 3 (Planning domain). A planning domain M is a triple ⟨P,O,H⟩
where P is a set of predicates, O is a set of operator names with their arity and,
for every op ∈ O, H is a function mapping an operator name op into a lifted
action schema.

Definition 4 (Finite-State Machine of a planning domain). The Finite-State
Machine (FSM) of a planning domainM = ⟨P,O,H⟩ for the set C of constants
is the triple M(C) = ⟨S,A, δ⟩ where S = 2P(C) is the set of all possible subsets
of facts; A is the set of all possible ground actions of each n-ary operator name
in O on any n-tuple of constants in C; δ ⊆ S × A × S is a transition relation
such that (s, a, s′) ∈ δ if pre(a) ⊆ s and s′ = s ∪ eff+(a) \ eff−(a).

8

CHAPTER 2. BACKGROUND

s0

s1

s2

move-down move-right

move-down

(a) Extensional representation

move(roomX, roomY)

preconditions: (at-robby roomX)

and (link roomX roomY)

effects: (at-robby roomY)

and not (at-robby roomX)

(b) Intensional representation

Figure 2.1: Alternative representations of a planning domain.

Observation 1. M is a deterministic planning domain if, given a set C of con-
stants, the transition function δ of M(C) is deterministic, i.e., ∀(si−1, ai, si) ∈
δ, ∄(si−1, ai, s

′
i) ∈ δ where si ̸= s′i.

Observation 2. M is a discrete planning domain if, given a set C of constants,
the transition function δ ofM(C) is discrete, i.e, the number of elements in the
domain S ×A is finite.

Given a set of constants C, a planning domainM can be represented explic-
itly byM(C), as in Figure 2.1a, or implicitly byM itself (Figure 2.1b). Indeed,
M(C) can be obtained by instantiating M with C, i.e., A can be obtained by
grounding the lifted action schemas in M with C, similarly 2P(C) can be ob-
tained by grounding the predicates in P with C. It is worth noting that M is
a much more compact and general representation, since it does not require to
explicitly enumerate all possible states and transitions ofM(C), and it can be
instantiated with different sets of constants.

Definition 5 (Planning problem). A planning problem is a tuple ⟨M, C, s0,G⟩
whereM is an action model, C is a (possibly empty) set of constants, s0 ⊆ P(C)
is the initial state, and G is a first-order formula over P, V and C.

Definition 6 (Plan). A plan for a planning problem ⟨M, C, s0,G⟩ is a sequence
⟨op1(c1), . . . , opn(cn)⟩ such that there is a sequence ⟨s1, . . . , sn⟩ of subsets of
P(C) (aka states), such that for every 0 ≤ i < n, pre(opi(ci)) ⊆ si, si =
si−1 ∪ eff+(opi(ci)) \ eff−(opi(ci)), and sn |= G.

A state sn ∈ S is reachable from a state s0 ∈ S in M(C) if there is a plan
⟨a1, . . . , an⟩ such that (si−1, ai, si) ∈ δ for i = 1 . . . n.

Notice that our definition of planning problem allows to express the first-
order goal formula G. We say that a state s |= G iff

∧
P (c)∈s P (c)∧

∧
P (c)∈P(C)\s ¬P (c) |=

G, under the assumption that all the elements of the problem are in C.

2.1.1 Solving Planning Problems

State space search There are several approaches for solving a planning prob-
lem: state space search, plan space search, boolean satisfiability, situation cal-
culus, etc. In the following, we describe state space search approaches, since
they are the ones mainly used in this work.

9

CHAPTER 2. BACKGROUND

A search algorithm is said to be complete when it is guaranteed to find all
possible solutions, and sound if it always computes correct solutions. The search
in the state space can be forward or backward. The forward search starts from
an initial state, and searches for a plan that leads the agent from the initial
state to a goal state. This can be achieved by considering all possible actions
applicable from the current state (e.g. breadth search), and, in this case, the
search algorithm is both complete and sound. However, performing a sound
and complete forward search is typically unfeasible, since the state space of a
planning problem is exponentially large w.r.t. the ground atoms of the planning
domain states (i.e. with n ground atoms the size of the state space is 2n).

The backward state space search starts from a set of goal states, and looks
for a backward sequence of actions that leads from a goal state to the initial
state. A key difference between the backward and forward search, is that in
the backward case the search algorithm considers a set of states, rather than a
single state. Moreover, at each step, the forward search considers the applicable
actions in a state, and the backward search considers the relevant actions for
a goal. A ground action is relevant for a goal (represented as a conjunction of
literals), if at least one of the action’s positive/negative effects belongs to the
goal. The action considered by the backward search should be the last action
of the plan, while in the forward search it should be the first action of the plan.

Heuristic functions It is worth noting that both forward and backward
searches suffer from scalability drawbacks. For this reason, typically heuris-
tic functions are exploited. In particular, a heuristic function estimates, for
each state s, the cost for reaching a goal state starting from s.

A well-known example of a (best-first) search algorithm, which makes use
of a heuristic function, is the A∗ search [98]. Specifically, A∗ exploits a cost
function f for assigning to each state s a cost f(s) = g(s) + h(s) where g(s) is
the cost for reaching the state s from the initial state, and h(s) is the heuristic
function estimating the cost of the cheapest path from s to a goal state. For
further details about the theoretical properties of a heuristic function and the
A∗ search algorithm we refer to [98].

In the state space search, there are two main approaches for designing a
heuristic function: (i) adding transitions to the FSM of the planning domain;
(ii) removing states from the FSM of the planning domain. An example of a
heuristic that adds transitions is the “ignore preconditions heuristic”, where the
original planning problem is relaxed by removing all action preconditions, and
all action effects but goal conditions. Next, the estimated cost for achieving
the goal from a state s is the length of the plan solving the relaxed planning
problem from s. A simple example of a heuristic that removes states from the
FSM of the planning domain is a heuristic that removes some ground atoms
from the initial state. This approach is also known as state abstraction, since
many states of the original planning problem are mapped into a single, more
abstract, state of the relaxed problem.

10

CHAPTER 2. BACKGROUND

op par(op) pre(op) eff+(op) eff−(op)
putOnTable x1, x2 clear(x1), on(x1, x2),

block(x1), block(x2)
clear(x2) on table(x1)

putOnBlock x1, x2 clear(x1), clear(x2),
block(x1), block(x2)

on(x1, x2) clear(x2)

Table 2.1: Action schema of the operators in the blocksworld domain.

block(block0)

block(block1)

on_table(block0)

on_table(block1)

Initial state

block(block0)

block(block1)

on(block1, block0)

Goal state

block0 block1 block0

block1

Figure 2.2: An example of planning problem in the blocksworld domain. The
plan consists of the single action putOnBlock(block1, block0).

2.1.2 Domain Examples

Blocksworld An agent has to move some blocks placed on a table. The agent
state is described by the set of predicates P = {block, on, on table, clear}.
The unary predicate block describes the type of the input object, e.g. block(block0)
indicates that block0 is an object of type block. The unary predicate on table

takes as parameter an object of type block and indicates that the block is placed
on the table. Similarly, the binary predicate on takes as parameters two objects
of type block and indicates that the first block is placed on top of the second
block.

The set of operator names is O = {putOnBlock,putOnTable}. The
operator putOnBlock takes as parameters two objects of type block and
places the first block on top of the second one. Similarly, putOnTable takes
as parameter an object of type block and places it on the table. The action
schema of the operators in the blocksworld domain is reported in Table 2.1. An
example of planning problem is reported in Figure 2.3.

Gripper An agent has to move some balls among different rooms of a building.
The agent state is described by the set of predicates P = {room, ball, at robby, at ball, free, carry}.
The nullary predicate free indicates that the agent gripper is free, i.e., the agent
is not carrying any ball. The unary predicate carry takes as parameter an object
of type ball and indicates that the agent is carrying the ball. The unary pred-
icates room and ball describe the type of the input object, e.g. room(room0)
indicates that room0 is an object of type room. The unary predicate at robby

takes as parameter an object of type room and indicates that the agent is lo-
cated at the input room object. Similarly, the binary predicate at ball takes

11

CHAPTER 2. BACKGROUND

op par(op) pre(op) eff+(op) eff−(op)
move x1, x2 room(x1), room(x2),

at robby(x1)
at robby(x2) at robby(x1)

pick x1, x2 ball(x1), room(x2),
at robby(x2), free(),
at ball(x1, x2)

carry(x1) at ball(x1, x2),
free()

drop x1, x2 ball(x1), room(x2),
at robby(x2), carry(x1)

at ball(x1, x2),
free()

carry(x1)

Table 2.2: Action schema of the operators in the blocksworld domain.

room(room1)

...

room(room9)

ball(ball1)

at_robby(room1)

at_ball(ball1, room3)

free()

Initial state
room(room1)

...

room(room9)

ball(ball1)

at_robby(room2)

at_ball(ball1, room3)

free()

Goal state

room1 room2 room3

room4 room5 room6

room7 room8 room9

room1 room2 room3

room4 room5 room6

room7 room8 room9

Figure 2.3: An example of planning problem in the gripper domain. The plan
consists of the single action move(room1, room2).

as parameter an object of type ball and an object of type room, and indicates
that the ball object is located at the room object.

The set of operator names is O = {move,pick,drop}. The operator move
takes as input parameters two objects of type room and moves the agent from
the first room to the second one. The operator pick takes as parameter two
objects of type ball and room and means that the agent picks up the ball
placed in the room where it is located into. Similarly, the operator drop takes
as parameter an object of type ball and an object of type room and indicates
that the agent drops the ball into the room where it is located into. The action
schema of the operators in the gripper domain are reported in Table 2.2. An
example of planning problem is reported in Figure 2.2.

2.2 Supervised Learning

An agent is learning if it improves its performance on future tasks after making
observations about the world [98]. A commonly adopted taxonomy of learning
groups it into three main paradigms: supervised learning, unsupervised learning,

12

CHAPTER 2. BACKGROUND

Figure 2.4: Classification Figure 2.5: Regression

and reinforcement learning.
Supervised learning [25] consists of learning an approximation of a function

f : X → Y given a set of n pairs ⟨x1, y1⟩, ⟨x2, y2⟩, . . . , ⟨xn, yn⟩, namely a
training set, where xi ∈ X and yi ∈ Y , for i ∈ 1, . . . , n. X is referred to as
the input set and is composed of real value numbers, similarly Y is the output
set, which can be either discrete or continuous. When Y is a set of discrete
values (aka classes), f is a classification function, and learning f allows to solve
a classification problem (e.g. binary classification [67]). Similarly, when Y is
a set of continuous values, f is a regression function, which solves a regression
problem (e.g. linear regression [80]).

Typically, learning f is not feasible since the training set does not contain all
the possible pairs ⟨xi, yi⟩ that can be obtained by considering every element in
X, and the corresponding output element in Y . Therefore, the learned function,
denoted as f ′ and referred to as an hypothesis, is an approximation of f . The
function f ′ should generalize over unseen input elements, i.e., given a new input
element xnew ∈ X, f ′(xnew) should be equal to f(xnew).

The learned hypothesis is evaluated by means of a test set, which consists
of m pairs ⟨x1, y1⟩, ⟨x2, y2⟩, . . . , ⟨xm, ym⟩. Typically, m < n, and the test and
training sets are disjoint. It is worth noting that evaluating the agent on pairs
⟨x, y⟩ contained in the training set is likely to overestimate the generalization
performance of f ′ on unseen examples. This problem is well-known as overfit-
ting, i.e. the learned function f ′ provides good accuracy on the training set but
worse accuracy on the test set. This is because the learned f ′ takes too much
care of details in the training set examples, which are not relevant to the class
prediction. As a result, the performance of f ′ on the test set worsens, i.e. f ′

does not generalize well on unseen examples.

2.2.1 Artificial Neural Networks

Artificial neural networks (or shortly neural networks in the following) are com-
putational models inspired by the human brain: they simulate the mental activ-
ity under the (neuroscience) hypothesis that it consists primarily of electrochem-

13

CHAPTER 2. BACKGROUND

∑
x1

b

x2

σ

w0 = 1

w1

w2

z =
∑n

i=1 wi ∗ xi + b a = σ(z)

Figure 2.6: A perceptron.

ical activity in networks of brain cells [98], called neurons. A neural network is
composed of units (also called perceptrons), the model of a single unit is shown
in Figure 2.6. The unit takes as input a bias b ∈ R, and an n-dimensional vector
of data x = {x1, . . . , xn} ∈ Rn, which is associated with an n-dimensional vec-
tor of weights w = { w0, . . . , wn−1} ∈ Rn. The weights in w and the bias b are
commonly referred to as parameters of the neural network. The unit computes
the sum of w · x+ b and applies an activation function a to derive the output.
An example of an activation function for binary classification is the sigmoid
activation function:

σ(x) =
1

1 + e−x

The sigmoid function takes as input a real value x and outputs a value
σ(x) ∈ (0, 1), which can be seen as a truth probability. In particular, the larger
the input value x, the closer the output value σ(x) to 1; similarly, the smaller
the input x, the closer the output σ(x) to 0, as shown in Figure 2.7.

Another example of an activation function is the softmax function S, which
is a generalization of the sigmoid function that can be used for multi-class
classification:

S(xi) =
exi∑n
j=1 e

xj

The softmax function maps an input vector of n real values to an output
vector of n real values that sum to 1. The i-th value of the output vector
corresponds to the probability of the input vector belonging to the i-th class.

There exist many activation functions, for a comprehensive survey about
different activation functions we refer to [31].

Feed-forward Neural Networks A neural network is generally composed of
many units connected with each other and grouped in layers. In a feed-forward
neural network, units of subsequent layers are fully connected, i.e., the output
of each unit in the previous layer is given as input to each unit in the next
layer. In particular, when the input layer is directly connected to the output
layer, the network is a single-layer feed-forward neural network. Whereas in the

14

CHAPTER 2. BACKGROUND

−6 −4 −2 0 2 4 6

0.5

1

σ(x)

Figure 2.7: The sigmoid activation function.

architecture of a multilayer feed-forward neural network there is at least one
hidden layer. An example of a multilayer feed-forward neural network with one
hidden layer is shown in Figure 2.8.

Universal approximation theorem Notably, it has been proved that mul-
tilayer feed-forward neural networks with a single hidden layer can approximate
any continuous function to any desired precision [52]. However, even if such
networks are able to approximate any continuous function, learning the approx-
imation function may fail for two main reasons: (i) the optimization algorithm
used for learning the parameters of the network may not be able to find the
parameter values corresponding to the desired approximation function; (ii) the
learned approximation function might be not correct due to overfitting. Feed-
forward networks provide a universal system for representing functions in the
sense that, given a function, there exists a feed-forward network that approx-
imates the function. There is no universal procedure for examining a training
set of specific examples and choosing a function that will generalize to examples
not in the training set [42].

Loss function The parameters of a neural network are optimized for min-
imizing the prediction error, which is computed by means of a loss (or cost)
function. Given a labeled input pair ⟨x, y⟩, the loss function L(y, ŷ) compares
the network prediction f(x, θ) = ŷ with the target value y. An example of a loss
function typically adopted for binary classification is the binary cross-entropy
[95]. Given a set of labeled input pairs {⟨xi, yi⟩}Ni=1, the binary cross-entropy
can be defined as:

− 1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi)

In particular, for each positive input pair ⟨xi, yi = 1⟩ the binary cross-
entropy sums log(ŷ), which is the log probability of xi being classified as 1.
Indeed, if the probability associated with the true class is close to 1, then its
contribution to the loss is close to zero. Conversely, if that probability is low,

15

CHAPTER 2. BACKGROUND

x1

x2

x3

Input layer Hidden layer Output layer

Figure 2.8: A multilayer feed-forward neural network with one hidden layer.

then the contribution to the loss is high. Similarly, for each negative input pair
⟨xi, yi = 0⟩, the binary cross-entropy sums log(1− ŷ).

There exist several loss functions [115], and the choice of the loss function
strictly depends on the task accomplished by the neural network (e.g. cross
entropy for multi-class classification tasks, or mean squared error for regression
tasks).

Back-propagation To make neural network predictions more accurate, we
have to change the network parameters (i.e. the weights and the bias). This
can be achieved by applying the gradient descent algorithm. In particular, each
parameter w can be updated as:

w ← w − µ
∂L
∂w

where the learning rate µ is a value in the range [0, 1], and ∂L
∂w is the derivative

of the loss with respect to the parameter w. The derivative ∂L
∂w can be computed

by applying the chain rule [117].
For example, consider two subsequent layers with one node for each layer, in

particular, the output layer and the previous hidden layer, as shown in Figure
2.9. Suppose that a is the sigmoid activation function. The input of the output
node is a(L) = σ(z(L)), where z(L) = w(L)a(L−1) + b(L). Consider the loss
function L0 = (ŷ0 − y0)

2, where ŷ0 = a(L). Since L depends on a(L), and a(L)

depends on z(L), and z(L) depends on w(L), to compute the derivative ∂L0

∂w(L) ,
we apply the chain rule and obtain:

∂L0

∂w(L)
=

∂L0

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂w(L)

16

CHAPTER 2. BACKGROUND

a(L−1) a(L)
w(L)

Figure 2.9: Link between two nodes of subsequent layers.

Specifically, in our example we obtain:

∂L0

∂a(L)
= 2(a(L) − y0)

∂a(L)

∂z(L)
= σ′(z(L))

∂z(L)

∂w(L)
= a(L−1)

Therefore:
∂L0

∂w(L)
= 2(a(L) − y0)σ

′(z(L))a(L−1)

It is worth noting that the derivative ∂L0

∂w(L) above is defined for a single
training example, though it can be generalized to a set of N training examples
by averaging over all training examples, i.e.

∂L
∂w(L)

=
1

N

N∑
k=1

∂Lk

∂w(L)

Similarly, the bias b(L) can be updated by computing the derivative of the
loss with respect to the bias:

∂L0

∂b(L)
=

∂L0

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂b(L)
= 2(a(L) − y0)σ

′(z(L))

The above procedure can be generally applied to compute the derivative
with respect to the weight in the previous layer:

∂L0

∂w(L−1)
=

∂L0

∂a(L−1)

∂a(L−1)

∂z(L−1)

∂z(L−1)

∂w(L−1)

However, since the output of the perceptron in the layer L−1, i.e. a(L−1), is
the input of the perceptron in the layer L, the output error for the perceptron in
layer L−1 is the input error of the perceptron in layer L, i.e. ∂L0

∂a(L−1) . Similarly

to ∂L0

∂w(L) and ∂L0

∂b(L) , the derivative ∂L0

∂a(L−1) can be defined as:

∂L0

∂a(L−1)
=

∂L0

∂a(L)

∂a(L)

∂z(L)

∂z(L)

∂a(L−1)
= 2(a(L) − y0)σ

′(z(L))w(L)

When an output layer L is composed of nL units (Figure 2.10), each j-th

output can be denoted as a
(L)
j and the loss L0 is computed by summing over all

17

CHAPTER 2. BACKGROUND

a
(L−1)
k

a
(L)
j

Hidden layer Output layer

w
(L)
jk

Figure 2.10: The hidden layer and output layer of a multilayer feed-forward
neural network with multiple units for each layer.

output units, i.e., L0 =
nL−1∑
j=0

(a
(L)
j − y0,j)

2, where y0,j is the j-th component of

the label y0. Similarly, a
(L)
j = σ(z

(L)
j), where the input z

(L)
j of the j-th unit in

the L-th layer is:

z
(L)
j = w

(L)
j0 a

(L−1)
0 + w

(L)
j1 a

(L−1)
1 + w

(L)
j2 a

(L−1)
2 + b

(L)
j

Summing up, the derivative of the loss L0 with respect to the weight w
(L)
jk

is:

∂L0

∂w
(L)
jk

=
∂L0

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂w
(L)
jk

Finally, the derivative of the loss with respect to one activation a
(L−1)
k of the

previous layer L− 1 becomes:

∂L0

∂a
(L−1)
k

=

nL−1∑
j=0

∂L0

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂a
(L−1)
k

=

It is worth noting that each unit in the layer L − 1 affects the loss of each
unit in the layer L, since the two layers are fully connected, therefore ∂L0

∂a
(L−1)
k

sums over all units in the layer L.

Optimizers The parameters of a neural network are updated for reducing the
loss according to an optimization algorithm, commonly referred to as an opti-
mizer. An example of an optimizer is the gradient descent algorithm previously

18

CHAPTER 2. BACKGROUND

considered. Generally, there exist several optimizers, each with its strength and
weaknesses, for a detailed overview we refer to [96].

Hyperparameters The hyperparameters of a neural network are variables
that determine the network structure (e.g. number of layers and units) and
the training process (e.g. learning rate, weights initialization method, number
of training epochs, etc.). The hyperparameter values are set before starting
the model training process, i.e. before optimizing the parameters. There exist
several approaches for optimizing the hyperparameters: random/grid search,
Bayesian optimization, etc. For a detailed survey about hyperparameter opti-
mization algorithms we refer to [123].

2.3 Reinforcement Learning

Reinforcement Learning (RL) is based on the idea that an agent learns by
perceiving and interacting with its environment [110]. For example, consider
an agent that is learning to play chess. The agent can learn a transition model
by making different moves. However, without external feedback about what is
(or is not) a desirable state, the agent has no grounds for deciding which move
to make. The agent needs to be able to understand that a good state is when it
can checkmate the opponent, and that when it is checkmated it is in a bad state.
The feedback discriminating good or bad states is called reward, and strictly
depends on the goal of the agent related to the state of the environment. RL
is learning how to map states to actions, so as to maximize a numerical reward
signal. An RL agent has explicit goals, can sense aspects of its environment,
and can choose actions to influence the environment. Formalizing the idea of a
goal through a reward signal is one of the most distinctive features of RL. The
agent environment interface of an RL agent is shown in Figure 2.11. At each
time step t, the agent executes an action at, and, at the next time step t+1, it
ends up in a state st+1 with a reward rt+1.

Exploitation VS exploration For maximizing the reward, the agent has
to execute actions previously tried that produced a high reward. However, to
discover good actions in terms of achieved reward, the agent has to try to execute
different new actions. This trade-off is known as the exploration-exploitation
dilemma, the agent has to exploit what it has experienced in the past, but it
also has to explore in order to make better action selections in the future.

RL basic elements Beyond the agent and the environment, there are four
main components of an RL system:

– a policy function π : S → A, where S is the set of perceived environment
states and A is the set of actions executable by the agent. The policy
function defines the agent’s behavior, by a mapping from perceived states
to actions to be executed in those states. In general, a policy can be

19

CHAPTER 2. BACKGROUND

Environment

Agent

action atstate st+1 reward rt+1

Figure 2.11: A Reinforcement Learning agent environment interface. The agent
executes actions in the environment and perceives the environment state and a
reward.

stochastic, specifying probabilities of the actions executable in a perceived
state.

– The reward function defines the goal of an RL problem. The agent’s
objective is to maximize the total reward it receives over the long run.
The reward signal is the primary basis for altering the policy; if an action
selected by the policy is followed by a low reward, then the policy may
be changed to select some other action in that situation in the future.
Generally, reward signals may be stochastic functions of the state of the
environment and the actions taken. The reward function can be formally
defined as: R : S ×A× S → R

– Whereas the reward signal indicates what is good in the short-term, a
value function specifies what is good in the long-term. The value of a
state is the total amount of reward an agent can expect to accumulate
over the future, starting from that state. For example, a state might
always yield a low immediate reward but still have a high value because it
is regularly followed by other states that yield high rewards, or vice versa.

Without rewards there could be no values, and the only purpose of esti-
mating values is to achieve more rewards. Nevertheless, decision-making is
based on values: we prefer actions that bring about states of highest value,
not highest reward, because these actions obtain the greatest amount of
reward for us over the long run. Notice that rewards are basically directed
by the environment, but values must be estimated and re-estimated from
the sequences of the agent’s observations. In fact, the most important
component of many RL algorithms is a method for efficiently estimating
values.

– The final element of some (i.e. model-based) RL systems is a model of the
environment, which allows to make inference about how the environment
behaves when the agent executes actions. Models are used for planning, by
considering possible future situations before they are actually experienced.
The model-based methods use models and planning for solving RL, as

20

CHAPTER 2. BACKGROUND

opposed to simpler model-free methods that are explicitly trial-and-error
viewed as almost the opposite of planning.

Markov Decision Processes Markov Decision Processes (MDPs) are a clas-
sical formalization of sequential decision-making, where actions influence not
just immediate rewards, but also subsequent situations, or states, and through
those future rewards. Thus MDPs involve delayed reward and the need to trade
off immediate and delayed reward.

Formally, an MDP is a tuple ⟨S,A,R, P, γ⟩, where S is a set of environment
states, A is a set of actions executable by the agent, R is a reward function, and
P is a stochastic transition function, i.e. P (s, a, s′) = Pr(s′|s, a). An MDP is
finite when S and A are finite sets, otherwise the MDP is infinite.

It is worth noting that an MDP satisfies the Markov property, i.e., the dis-
tribution of the next state s′ depends only on the current state s and action
a, rather than on the whole sequence of previously visited states and executed
actions; formally:

Pr(st+1 = s′, rt+1 = r | st, at, st−1, at−1, . . . , r1, s0, a0) = Pr(st+1 = s′, rt+1 = r | st, at)

Episodic VS continuous tasks The interaction between the agent and the
environment can naturally break into finite subsequences called episodes, such
as plays of a game. At each episode, the agent starts from a (possibly sampled)
initial state and ends in a particular type of state named terminal state, which
can be reached from the initial state by executing a finite sequence of actions.
Interactions of this kind, i.e., where there is a natural notion of final time step,
are called episodic tasks, and the final time step T is a random variable that
can vary between different episodes. Similarly, when the agent–environment
interaction goes on continually with no time step limit, such as an application
to a robot with a long life span, the task is defined continuing task.

The time step limit T is also referred to as horizon. For episodic tasks, T
is a finite number and the MDP has a finite horizon. Similarly, for continuing
tasks, T is infinite and we have an infinite horizon MDP.

Return and discount At each time step t, the immediate reward is a single
number, rt ∈ R. However, the agent does not have to maximize the immediate
reward, but the cumulative reward in the long run. Let rt+1, rt+2, . . . be the
sequence of rewards received by the agent after time step t. Formally, the agent
seek to maximize the expected return Gt, which is a function of the reward
sequence, e.g. Gt = rt+1 + rt+2 + · · ·+ rT .

Notice that the return formulation can be problematic for continuing tasks,
because the final time step is not finite and the maximized expected return
can be infinite (e.g. suppose the agent receives a reward of +1 at each time
step). To maximize the expected return with infinite horizon, we introduce
the discounted return. The agent tries to select actions so that the sum of the

21

CHAPTER 2. BACKGROUND

discounted rewards it receives over the future is maximized. In particular, it
chooses the next action to execute in order to maximize the expected discounted
return:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1

where γ ∈ [0, 1] is called the discount factor, and determines how much
future reward should be “discounted” when making decisions. The discount
rate determines the present value of future rewards: a reward received k time
steps in the future is worth only γk−1 times what it would be worth if it were
received immediately. If γ < 1, the expected discounted reward is a finite value
as long as the reward sequence {Rk} is bounded. If γ = 0, the agent is “myopic”
in being concerned only with maximizing immediate rewards: its objective, in
this case, is to learn how to choose At so as to maximize only rt+1. In general,
acting to maximize immediate reward can reduce access to future rewards so
that the return is reduced. As γ approaches 1, the return objective takes future
rewards into account more strongly; the agent becomes more farsighted.

Finally, the definition of the return in the continuing and episodic tasks can
be unified as follows:

Gt =

T∑
k=0

γkrt+k+1

where T = ∞ for continuing tasks and it has to be γ < 1; whereas T is a
finite value for episodic tasks and we admit the case γ = 1.

Value functions and policies Most RL algorithms involve estimating value
functions, i.e. functions of states (or state action pairs) that estimate how good
it is for the agent to be in a given state (or to perform a given action in a given
state). Specifically, the notion of expected discounted reward allows to measure
“how good” is a state in terms of future rewards. As future rewards depend
on what actions the agent will take, value functions are defined with respect
to particular ways of acting, called policies. Formally, a policy π is a mapping
from states to probabilities of selecting each possible action, i.e., π defines a
probability distribution over a ∈ A(s) for each s ∈ S. If the agent is following
policy π at time t, then π(a|s) is the probability that at = a if st = s.

The value function of a state s under a policy π, denoted vπ(s), is the
expected return when starting in s and following π thereafter:

vπ(s) = Eπ[Gt|St = s] = E

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S

where Eπ[·] denotes the expected value of a random variable given that the
agent follows policy π, and t is any time step. Note that the value of the terminal
state, if any, is always zero. We call the function vπ the state-value function

22

CHAPTER 2. BACKGROUND

for policy π. Similarly, we define the value of taking action a in state s under
a policy π, denoted qπ(s, a), as the expected return starting from s, taking the
action a, and thereafter following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣St = s,At = a

]
We call qπ the action-value function for policy π.

Bellman equations A fundamental property of value functions used through-
out RL and dynamic programming is that they satisfy recursive relationships,
also known as Bellman consistency equations. For any policy π and any state s,
the following consistency condition holds between the value of s and the value
of its possible successor states:

vπ(s) = Eπ[Gt|st = s]

= Eπ[rt+1 + γGt+1|st = s]

=
∑
a

π(a|s)
∑
s′

∑
r

Pr(s′, r|s, a)
[
r + γEπ[Gt+1|st+1 = s′]

]
=

∑
a

π(a|s)
∑
s′,r

Pr(s′, r|s, a)
[
r + γvπ(s

′)
]
, for all s ∈ S,

For each triple (a, s′, r), we compute the probability of executing action
a ∈ A from state s ∈ S and ending in state s′ ∈ S with reward r ∈ R, i.e.,
π(a|s)p(s′, r|s, a). Then, the probability associated with each triple (a, s′, r)
is used for weighting the discounted value γvπ(s

′) of the expected next state
s′, plus the reward r expected along the way. Finally, we sum over all possible
triples to get an expected value. The Bellman consistency equation for vπ states
that the value of the start state must equal the discounted value of the expected
next state, plus the reward expected along the way.

Value functions define a partial ordering over policies. A policy π is defined
to be better than or equal to a policy π′ if its expected return is greater than
or equal to that of π′, for all states. In other words, π ≥ π′ if and only if
vπ(s) ≥ vπ′(s), for all s ∈ S. For finite MDPs, there always exists a policy
π∗ that is better than or equal to all other policies, i.e., an optimal policy.
Generally, there can be multiple optimal policies. They share the same state–
value function v∗, called the optimal state–value function and defined as:

v∗(s) = max
π

vπ(s) for all s ∈ S

Optimal policies also share the same optimal action–value function q∗, de-
fined as:

q∗(s, a) = max
π

qπ(s, a)

23

CHAPTER 2. BACKGROUND

for all s ∈ S and a ∈ A(s). For the state-action pair (s, a), the function
q∗(s, a) gives the expected return for taking action a in state s and thereafter
following an optimal policy. Thus, we can write q∗ in terms of v∗ as follows:

q∗(s, a) = E[rt+1 + γv∗(st+1)|st = s, at = a]

Given that v∗ is the value function for a policy, it must satisfy the Bellman
consistency equation previously stated. However, since v∗ is the optimal value
function, the Bellman consistency equation for v∗ can be stated with no reference
to any specific policy. This is the Bellman optimality equation for v∗. Intuitively,
the Bellman optimality equation expresses the fact that the value of a state
under an optimal policy must equal the expected return for the best action
from that state:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|st = s, at = a]

= max
a

Eπ∗ [rt+1 + γGt+1|st = s, at = a]

= max
a

E[rt+1 + γGt+1|st = s, at = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

The last two equations are two forms of the Bellman optimality equation for
v∗; whereas the Bellman optimality equation for q∗ is:

q∗(s, a) = E[rt+1 + γmax
a′

q∗(st+1, a
′)|st = s, at = a]

=
∑
s′,r

p(s′, r|s, a)
[
r + γ

′
max

a
q∗(s

′, a′)
]

For finite MDPs, the Bellman optimality equation for v∗ has a unique so-
lution. The Bellman optimality equation is actually a system of n equations,
one for each state. In principle, when the dynamics P of the environment is
known, the nonlinear system of equations for v∗ can be solved by means of
state-of-the-art solvers of nonlinear systems; similarly for q∗.

Once the optimal value function v∗ has been computed, then any policy that
is greedy with respect to v∗ is an optimal policy, i.e., the best actions after a
one-step search will be optimal actions. A greedy policy is actually optimal in
the long-term sense because v∗ turns the optimal expected long-term return into
a quantity that is locally and immediately available for each state.

24

CHAPTER 2. BACKGROUND

Similarly with q∗, for any state s, the agent can select an action that max-
imizes q∗(s, a). The action-value function provides the optimal expected long-
term return as a value that is locally and immediately available for each state-
action pair.

Explicitly solving the Bellman optimality equation allows to find an optimal
policy, and thus to solve the RL problem. However, this solution is rarely
applicable, since it relies on at least three strong assumptions: (i) a complete and
correct MDP of the environment is known; (ii) there are enough computational
resources to compute a solution; (iii) the Markov property. Typically, it is
not possible to apply this solution since at least one of the above assumptions is
violated. For example, when the problem has an exponential number of states, it
is not feasible to compute a solution to a nonlinear system of an exponentially
large number of equations in a reasonable time. Due to the aforementioned
limitations, in RL it is typically necessary to look for approximate solutions,
e.g., using actually experienced transitions in place of knowledge of the expected
transitions.

25

Chapter 3

Related work

We refer to Figure 1.2, and describe the related work according to their simpli-
fying assumptions with respect to the agent components to be learned. Many
approaches focus on learning a specific component, e.g. perceptual anchoring
approaches aim to learn the perception function, and typically do not consider
agents planning in unknown environments; action model learning approaches
assumes a perfect perception function and executor module are given and focus
on learning the action preconditions and effects, i.e. the environment model.
Different methods have been proposed for planning in a latent space, these
methods do not consider the problem of symbolic action execution but tackle
the problem of learning multiple components, i.e. the perception function and
the environment model. Approaches integrating symbolic planning and deep
RL assume all the components to be given but the executor, and exploit deep
RL techniques for learning to compile symbolic actions into low-level operations
executable by the agent’s actuators. Finally, deep RL methods do not con-
sider the agent components separately, but rather apply end-to-end training for
learning all the components simultaneously.

3.1 Perceptual Anchoring

Perceptual anchoring [21] is the process of creating and maintaining the cor-
respondence between symbols and sensor data that refer to the same physical
objects. With respect to Figure 1.2, perceptual anchoring deal with the problem
of learning the perception function and “ Environment model” components, in
particular the link between the perceptions and the symbolic state contained
into the environment model. We share the idea of anchoring low-level sen-
sory perceptions and high-level symbolic representation proposed in [21], and
further studied in [77, 97, 44, 88, 29, 89]. In [21], authors provide a general
overview of the anchoring problem, and discuss the main challenges that arise
when building a robotic system that requires perceptual anchoring. For exam-
ple, at the symbolic level, we can identify objects with a specific name (e.g.

26

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 3.1: Perceptual anchoring in the agent environment interface.

“block0”), while the perceptual system is not in general able to perceive the
identity of an object but only some of its properties (e.g. the color of the block,
its size, etc.). In [77], the anchoring framework introduced in [21] is extended
for tackling the problem of maintaining coherent perceptual information in a
mobile robotic system working over extended periods of time, i.e., to cope with
perception management considering multi-sensing resources and temporal fac-
tors. The perceptual anchoring framework proposed in [21] uses a top-down
approach, from symbols to perceptions, while in [77] the approach is extended
to be also bottom-up, i.e., from perceptions to new symbols. Moreover, [77]
focus on the problem of maintaining anchors, that is, matching them when an
object has already been seen in the past, and deleting them when their “life”
time is expired and the object probably removed from the environment. [97] ex-
ploits perceptual anchoring for creating a graph-based model with object unary
features (e.g. the position of an object) and pairwise features (e.g. the perpen-
dicularity between two objects). The graph-based model is then combined with
a probabilistic graphical model [63] for extracting contextual relations between
objects that are used as additional information for object recognition. A follow-
up work is done in [44], where the approach learns the function for matching
a new anchor with a previously seen one by means of a Support Vector Ma-
chine (SVM). The SVM classifier is trained on samples of object pairs manually
labeled as “same or different object”, in order to approximate the similarity
between two objects. In [88, 89], the bottom-up approach proposed in [77] is
deepened for dealing with semantic relational object tracking. Interestingly, as
a perception function, authors exploit a predicate grounding relation given as
input for predicting properties of objects (e.g. the color of a cup), and spatial
relationships between objects (e.g. an apple is behind a cup). Furthermore,
they enhance the anchoring process with high-level probabilistic reasoning for
tracking and predicting the state of objects that might not be perceived due to,
e.g., occlusion. In [29], the work proposed in [88, 89] is extended for dealing
with multi-modal probability distributions and integrated with statistical rela-
tional learning to learn probabilistic logic rules for reasoning about the objects
state. All the aforementioned approaches tackle the anchoring problem per se,
whereas in this work, we consider a broader framework integrating perceptual
anchoring with symbolic planning and execution, for enabling agents to either
perform tasks in unknown environments or plan for learning object anchors, i.e.
object properties.

27

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 3.2: Action model learning approaches in the agent environment inter-
face.

3.2 Action model learning

In the planning literature, there are many works that aim to learn a symbolic
representation of the planning domain from sequence of symbolic states corre-
sponding to transitions. The approaches can be grouped into offline and online.
In the offline setting, a set of plan traces, where each plan trace consists of
subsequent transitions, is given as input; and the preconditions and/or effects
and/or input parameters of the actions are inferred from the set of plan traces.
In the online setting, there is no set of input plan traces, and the agent has to
either generate informative plan traces online or execute the actions selected
according to some criteria (e.g. randomly or by a human teacher).

3.2.1 Offline approaches

Recent offline approaches address the problem of model learning with different
assumptions on the observability of states and actions.

Fully observable plan traces

[109] proposes an approach for learning grounded action models from a set of
fully observable plan traces. They learn action preconditions and effects by look-
ing at the transitions in each plan trace. Interestingly, the learned action model
is guaranteed to be safe and produce sound plans. The approach above has
been extended in [56] for learning lifted action models, where authors propose a
method called Safe learning of lifted Action Models (SAM). The learned action
models preserve the theoretical property of safety, but an additional assumption
called injective action binding assumption is introduced, i.e., the assumption
that every action parameter is mapped to a different object. Notably, in [56],
an Extended version of SAM (E-SAM) is proposed for dealing with ground ac-
tions that do not respect the injective action binding assumption. A follow-up
work [55] extends SAM for learning probabilistic action models which are prob-
ably safe and approximately complete. With respect to all the aforementioned
approaches, SAM and its variants require fully observable plan traces. In [12],
authors propose a method for learning action models from the structure of the
state space associated with small problem instances. Notably, they do not as-
sume knowledge of the action schemas, predicate symbols, or objects, which

28

CHAPTER 3. RELATED WORK

are learned from the input state space. In particular, they learn action models
that produce state-space graphs isomorphic to the input ones, by encoding the
learning problem as a SAT problem. However, in [12], the input graphs are
assumed to be complete and without noise. A follow-up work [94] relaxes these
assumptions, where authors propose a more efficient encoding of the learning
problem in answer set programming.

Partially observable plan traces

Action Relation Modeling System (ARMS) [124] is one of the first approaches
for learning STRIPS action models from plan traces with partially observable
states. For learning the action model, ARMS builds a weighted propositional
satisfiability (weighted MAX-SAT) problem and solves it using a MAX-SAT
solver. The constraints of the SAT problem are extracted from the states and
actions in the plan trace (e.g. by looking for frequent relation-action pairs).
Finally, ARMS guarantees that the learned action models are approximately
correct and concise. The notion of correctness and conciseness are given accord-
ing to evaluation metrics (i.e. error and redundancy) defined in [124]. Learning
Object Centred Models (LOCM) [24] learns classical planning action models
from plan traces with partially observable states. Particularly, LOCM groups
the objects according to their position in the ground action names contained
in the plan traces. Afterward, it assembles the transition behavior of each
group of objects, the co-ordinations between transitions of different groups of
objects, and the relationships between objects of different groups. To achieve
this, LOCM relies on the assumption that actions change the state of objects,
and whenever an action is executed, the preconditions and effects on an object
are the same. The learned models are specified in the form of parameterized
finite state machines, where the state parameters encode associations between
objects. Notably, LOCM does not require input knowledge about the planning
domain to be learned (e.g. the set of predicate names), however, it does not deal
with static knowledge (e.g. static preconditions), which needs to be explicitly
specified. A follow-up work (LOCM2) has been done in [23], where LOCM has
been extended for learning a wider range of domains by allowing a group of
objects to be represented by multiple parameterized finite state machines. Fi-
nally, LOP [43] extends LOCM for dealing with static knowledge, but requires
additional input knowledge (i.e. a set of optimal plans). [129] introduces an ap-
proach, namely Learning Action Models from Plan traces (LAMP), that learns
action models with quantifiers and logical implications from a set of plan traces
with partially observable states. They first encode the state transitions in the
plan traces into propositional formulas, then they generate candidate formulas
involving the input predicate list and domain constraints. Next, they build
a Markov Logic Network [91] and select the logical formula with the higher
weight. Finally, the selected formulas are converted into the learned action
model. However, the learned action models are neither correct nor complete.
Another prominent system is Fama [4], which learns action models offline from
examples by transforming the learning task into a classical planning task. It

29

CHAPTER 3. RELATED WORK

works with different kinds of inputs, from a set of plans to just a pair of initial
and final states, without intermediate actions or states. Moreover, it accepts in
input partially specified action models. On the one hand, the aforementioned
approaches to offline learning can deal with partial observability of states and
actions, and some of them even with noisy states and noisy actions.

Noisy plan traces

[128] proposes a method for learning action models from plan traces with par-
tially observable states and noisy actions, namely Action Model Acquisition
from Noisy plan traces (AMAN). In particular, AMAN looks for the action
model that best explains the input plan traces. To find such a model, firstly
a set of possible action models is computed, then AMAN creates a graphical
model with the causal relations between states, actions (grouped into correct ac-
tions and probably noisy actions), and possible action models. Finally, AMAN
exploits the plan traces and returns the model that maximizes a reward func-
tion defined in terms of the percentage of actions successfully executed and the
percentage of goal propositions achieved after the last successfully executed ac-
tion. In [85], authors propose a method for learning action models from a set
of plan traces with partially observable and noisy states, where the execution
of actions in the traces can also fail. They encode the symbolic state as binary
vectors, then compute the difference vector between the starting and destination
states in the transitions contained in the plan traces. Next, for each action and
propositional atom, they train a voted perceptron classifier [37] that predicts
the difference value of the propositional atom in the difference vector, given a
starting state and the action associated with the classifier. Afterward, a set of
logical rules representing preconditions and effects is extracted from the clas-
sifier associated with each action. Finally, rules are filtered and combined to
produce a STRIPS action model. All these approaches are offline, require input
plan traces that in some cases might be not available, and hence do not deal
with the issue of selecting informative plan traces.

3.2.2 Online approaches

Since the seminal work on online learning of operators [40, 41, 116], and the
first approaches for learning action models by integrating learning, planning,
and execution [38], some recent approaches have addressed the problem of on-
line and incremental learning of action models. [114] proposes an approach to
online learn action models which can be used in web-service planning problems.
Their approach requires the use of an external “teacher” providing plan traces
on demand. 3SG [15] is an online algorithm that learns probabilistic action
models with conditional effects and deals with action failures, sensory noise,
and incomplete information. [120] describes an instance-based online method
for learning action models in relational domains. The work is extended to deal
with both discrete and continuous action models [121, 122]. [92] propose a
technique based on relational RL to learn deterministic action models, and [93]

30

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 3.3: Planning in a latent space within the agent environment interface.

extend the approach to deal with nondeterministic actions. These approaches
are based on important technical differences with respect to our work. Most
importantly, the main conceptual and practical difference is that all these ap-
proaches assume that the action to be executed is randomly selected or given
as input, and therefore do not deal with the problem of guiding the exploration
phase toward informative states.

3.3 Planning in a latent space

There are some approaches that plan starting from continuous observations
(e.g. RGB images), rather than symbolic states. They map each continuous
observation into a symbolic state composed by a set of latent boolean variables,
which is suitable for symbolic reasoning. These approaches focus on learning the
perception function, environment model components, and exploit the learned
representations for applying symbolic planning, as shown in Figure 3.3.

LatPlan [7, 6, 8] takes as input pairs of high dimensional raw data (e.g.,
images) corresponding to transitions and learns both a symbolic planning do-
main and a mapping among images and symbolic states. In particular, the
mapping among images and symbolic states is learned through a variational
autoencoder [59], which takes as input an image of the environment and finds
the corresponding propositional state representation in a latent space; a similar
approach has been proposed in [3]. The learned autoencoder is used to convert
pairs of subsequent images to symbolic transitions, from which an off-the-shelf
action model learning method generates a ground action model. Specifically,
in the learned action model, the ground action parameters, preconditions, and
effects are specified in terms of latent variables. For solving a planning problem,
LatPlan takes as input an initial and goal state image, converts them into sym-
bolic states with the learned autoencoder, and computes a plan with the learned
action model. Finally, intermediate states in the plan are decoded back to a
human-comprehensible image sequence. LatPlan is an offline approach, while
our approaches [69, 71] are online and work also in dynamic environments.

In [46], authors propose a model-based method for learning a latent dynamics
model from image observations and planning in the latent space. With respect
to LatPlan, they do not exploit the learned latent representation for applying
symbolic planning, since planning is performed by means of model-predictive
control [90].

31

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception, reward

Figure 3.4: Model-free Reinforcement Learning agent environment interface.

Causal InfoGAN [68] learns discrete or continuous models from high di-
mensional sequential observations. This approach fixes a priori the size of the
discrete domain model. Differently from our approaches [69, 71], their goal is to
generate an execution trace in the high dimensional space. In particular, given
a pair of initial and goal observations, they compute a sequence of observations
from the initial observation to the goal one, such that the computed sequence
can be observed by executing actions. This is achieved by projecting an initial
observation and a goal observation into the corresponding states in a discrete
planning domain, computing a plan, and exploiting a Generative Adversarial
Network (GAN) for mapping the states encountered by executing the plan into
image observations.

On the one hand, the above approaches deal with the problem of mapping
continuous observations into symbolic states. Moreover, for planning domain
states that can be visually represented, these approaches can produce a visual
plan that is human-comprehensible. On the other hand, the state variables are
latent, and the action preconditions and effects specified in the learned action
models are not human-readable, which is a critical limitation when there is a
need of understanding how the environment is affected by action execution.

3.4 Planning by Deep Reinforcement Learning

The approaches based on RL [57, 110] focus on learning policies, and typically
assume the set of states and the correspondence between continuous data from
sensors and states is fixed and given. There are, however, RL approaches that
plan and learn directly in a continuous space, i.e. approaches based on deep RL.
These approaches exploit deep learning models for learning an embedding of
the agent state, represented by a sequence of continuous features, starting from
continuous observations. RL approaches can be mainly grouped into model-free
and model-based. In model-free approaches, the agent has no internal model of
the environment, and directly learns from experience, i.e. by executing actions.
Whereas in model-based RL, a model of the environment’s dynamics is learned
and used to supplement direct learning from experience.

32

CHAPTER 3. RELATED WORK

3.4.1 Model-free

In model-free deep RL, none of the components shown in Figure 1.2 is given
as input, i.e., all of them are learned simultaneously. Figure 1.2 is similar to
the agent-environment interface of an RL agent, except for the information per-
ceived by the agent, which does not only consist of sensory data but also of a
reward. In particular, in model-free deep RL, all the agent components in Figure
1.2 are learned by end-to-end training, as shown in Figure 3.4. On the one hand,
deep RL techniques make it easier to develop agents that solve difficult tasks,
without the need of learning each component, this can be particularly suitable
for solving low-level control tasks such as grasping objects with a robotic hand.
On the other hand, the harder the task to be solved the more the data required
for training an RL agent, which can be a limitation in scenarios where, e.g., few
data are available and/or there are no simulators. Moreover, there are some
well-known drawbacks in deep RL: (i) lack of explainability about why a deep
RL agent decides to execute a particular action; (ii) the reward function depends
on a specific goal, i.e., once an RL agent is trained for solving a particular task
(e.g. moving blocks on a table), it is difficult to generalize over different tasks
(e.g. moving balls among different rooms) without changing the reward func-
tion and retraining the model. A breakthrough in deep RL has been the work
by [84], where authors introduced deep-Q learning, a deep RL algorithm that
can learn successful policies directly from high-dimensional sensory inputs using
end-to-end RL. A follow-up work is proposed in [113], where some drawbacks
about the value overestimation of deep Q-learning in large-scale problems are
overcome by integrating deep Q-learning and double Q-learning [48]. Another
deep RL breakthrough is presented in [75], where the deterministic policy gradi-
ent method [105] is integrated with deep Q-learning for dealing with continuous
action spaces. Such approaches are very suited to address some tasks, e.g.,
moving a robot arm to a desired position or performing some manipulations.
However, we believe that, in several situations, it is conceptually appropriate
and practically efficient to learn an abstract discrete and deterministic model
where planning is much easier and more efficient to perform. Notably, the afore-
mentioned approaches perform at a human level in a wide range of games and
continuous control tasks. However, they assume the environment is fully observ-
able, and do not tackle the problem of abstracting sensory data (i.e. images)
into a symbolic and explainable representation.

Object Goal Navigation

In the context of Embodied AI [30], the proposed approaches are mostly based
on deep RL. As an example, we consider the object goal navigation task, where
a robotic agent is placed in a random position of an unknown environment
(e.g. an apartment) and asked to find and go close to an object instance of
a given goal object type. In particular, this task falls under the umbrella of
visual navigation and exploration. To the best of our knowledge, the majority
of the proposed approaches are based on deep RL. [83] formulates the problem

33

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception, reward

Figure 3.5: Model-based Reinforcement Learning agent environment interface.

of navigating in complex environments with dynamic objects as an RL prob-
lem. In particular, they jointly learn the goal-driven RL policy with auxiliary
depth prediction and loop closure classification tasks. The auxiliary tasks are
used to enrich the (latent) representation learned during training and improve
data efficiency. [17] proposes a deep RL method, namely Active Neural SLAM
(ANS), for learning a policy for navigating in an unknown environment and
optimizing the exploration. Precisely, they construct a topological map of the
environment from depth observations; then an RL algorithm is applied on such
a map, with the objective of learning a policy that selects a point, reached
via path planning, to maximize the environment exploration. Afterward, same
authors [18] extend the approach to cope with semantic exploration. The oc-
cupancy map is enriched with semantic information about objects in the scene.
The policy, trained specifically for solving the object goal navigation problem,
exploits the semantic information available in the map. [34] learns a memory-
based policy, which constructs semantic maps by means of an encoder-decoder
model with a spatial memory transformer. The memory-based policy embeds
and adds each observation to a memory and uses the attention mechanism to
exploit spatiotemporal dependencies. They experimentally evaluate the learned
policy by solving the object goal navigation problem. In [86], they propose a
similar approach that learns a navigation policy through deep RL by using as
a visual representation of the state the semantic segmentations and detection
masks provided by off-the-shelf segmenter and detector. Another similar ap-
proach is proposed in [126], where authors enrich the learned representation by
means of auxiliary tasks, e.g., the task of predicting the action executed by the
agent given two subsequent observations.

3.4.2 Model-based

An alternative approach in RL is model-based deep RL. With respect to Figure
3.4, in model-based deep RL the agent component environment model is learned
(Figure 3.5). In particular, the environment model is a Markov Decision Pro-
cess (MDP) used for estimating the state values and then learning the policy
accordingly. On the one hand, model-based algorithms are known in general
to outperform model-free ones in terms of sample complexity [26], since they
do not need to generate trajectories by executing actions online, but they can
generate trajectories in the learned MDP model. On the other hand, typically
model-based deep RL requires more computational resources w.r.t. model-free

34

CHAPTER 3. RELATED WORK

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 3.6: Agent environment interface with a focus on the integration of
symbolic planning and deep reinforcement learning.

deep RL, which makes model-based deep RL unsuitable when dealing with high-
dimensional state representations. One of the most recent breakthroughs in deep
RL has been proposed in [106], where authors trained a deep RL agent for play-
ing Go and won against the human European Go champion. In particular, in
[106], both a policy network and a value network are trained, and then combined
with Monte Carlo Tree Search [22, 62]. The approach has been extended in [102]
for playing other games obtaining superhuman performance equivalent to the
model-free approach proposed in [106]. A discussion about peculiarities and
drawbacks of [102] has been reported in [47]. We share the idea of a planning
domain at the abstract level with all the work on abstraction on MDP models,
see, e.g., [1, 74, 65, 2]. However, our problem and approach are substantially
different, since in the work about abstraction on MDP models, the mapping
between original MDP states and abstract states is given, while we learn it.

Our approach shares some similarities with the work on planning by RL,
since we learn by acting in the environment. However, in RL, the agent di-
rectly perceives the state of the environment, and there is no need to learn
a perception function that links the sensory data with the abstract states of
the environment. Even though in deep RL a perception function is learned,
the state representations are not human-comprehensible, and it is not trivial to
explain why an agent decides to execute an action. Furthermore, the learned
perception function provides state representations that strictly depend on the
goal, i.e., the perception function learned when solving a specific task is not
likely to generalize to different tasks.

3.5 Symbolic Planning and Deep Reinforcement
Learning

The problem of integrating symbolic action models with low level sensory data
and actions has been addressed by different approaches, i.e., the problem of
learning the executor component in Figure 3.6. Most of the proposed approaches
are based on RL techniques. [78] proposes a framework, called Symbolic Deep
RL (SDRL), which combines symbolic planning and deep RL to improve the
data efficiency and interpretability of deep RL, and learn policies that com-
pile high-level actions into low-level operations. Their goal is to learn both a

35

CHAPTER 3. RELATED WORK

sequence of subtasks, which are symbolic actions, and the corresponding sub-
policies, so that executing the sub-policy for each subtask one by one can achieve
the maximal cumulative reward. To this aim, they propose a formulation that
maps symbolic transition to a similar structure of RL options [66]. SDRL as-
sumes that a grounded domain model is provided in input and never updated,
i.e., it does not deal with the problem of learning the environment model com-
ponent in Figure 1.2. Moreover, SDRL assumes a perfect oracle that maps
low-level perceptions into symbolic states, i.e., it assumes a perfect perception
function component (Figure 1.2) is given as input.

Neural Symbolic RL (NSRL) [79] represents abstract domains in first-order
logic and uses RL to learn high-level policies. NSRL generates a compact repre-
sentation of the learned policies as a set of rules via inductive logic programming.
In particular, NSRL encodes the symbolic states into state matrices, then ap-
plies an attention mechanism to weight the more relevant facts in each state,
i.e., the more relevant rows in each matrix. Then, NSRL multiplies the weighted
state matrices to generate logical rules, according to a process called multi-hop
reasoning, which is described in [125]. Afterward, another attention mechanism
is applied to the logical rules to associate them with weights, and the weighted
logical rules are given as input to a multilayer perceptron network that out-
puts the action to execute. Similarly to SDRL, NSRL assumes a given and
fixed abstract domain instantiation and a perfect mapping from sensory data
to symbolic states.

DPDL [58] represents abstract domains in PDDL. It learns online both map-
pings from sensory data to symbolic states (i.e. the perception function) and
low-level policies for executing high-level actions. This allows DPDL to gener-
alize over different tasks by reusing the learned low-level policies. DPDL learns
online the mappings from sensory data to symbolic states (i.e. the percep-
tion function), and separately learns a low-level policy that translates symbolic
operators into executable actions on the robot (i.e. the executor). Both the
perception function and low-level policy are modeled as variational temporal
convolutional network [73] that takes as input a finite sequence of observations
(i.e RGB images). The perception function returns the truth values of the
propositional atoms describing the symbolic state. The low-level policy takes as
input also the symbolic operator to be executed and outputs a target configura-
tion in the joint space. As the other methods mentioned above, DPDL assumes
a given and fixed grounded PDDL domain.

36

Chapter 4

Learning Planning Domains
from Sensor Data

The specification of planning domains is a challenging task. A good planning
domain should abstract away the details of the world state which are irrelevant
to the achievement of the agents’ goals, keeping only the relevant details. In
many real applications, it may happen that agents do not have a good planning
domain in advance. For instance, a robot moving packages among the rooms
of a building could have a model of the map of the building with a number
of flaws or relevant missing details. In these cases, agents should be able to
learn and update their models (planning domains) while acting in the world
and observing the consequences of their actions. This is the main purpose of
the PAL algorithm (Planning, Acting, and Learning) proposed in [103], which
learns, incrementally and online, a discrete deterministic planning domain from
real-value observations of the world. Each domain state is linked to observa-
tions by the so-called perception function, which provides the likelihood of the
observations when the agent is at that specific state. At each iteration, PAL
updates the set of states of the extensional representation of a planning domain,
possibly by introducing new states for unexpected observations, and it adjusts
the transition relation and the perception function.

In order to overcome the scalability limitations of PAL, the agent is provided
with an initial “draft” planning domain specified in PDDL [81]. This domain
is required to be neither complete nor correct. This planning domain is used
to guide the agent in the discovery of the world. We propose a new algorithm,
that learns the extensional planning domain and incrementally updates and
corrects the initial PDDL domain with additional information collected during
the execution of actions.

In the proposed approach, the presence of both the extensional and the
PDDL planning domain is exploited to efficiently achieve the agent’s goals
through two alternative and complementary planning algorithms: (i) a shortest-
path algorithm for planning in the space of the states of the extensional model

37

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 4.1: PAL within the agent environment interface.

(i.e. the states already discovered by the agent), and (ii) a PDDL planning
algorithm for generating plans that allow discovering new states, if the goal is
not achievable in the extensional model.

Considering the agent-environment interface introduced in Chapter 1, in this
Chapter we focus on: (i) learning the perception function, since the agent maps
the low-level perceptions into the high-level states of the planning domain; (ii)
learning the environment model, which is the extensional model learned by the
agent; and (iii) the planner module, given that we plan with both the extensional
and intensional models, as shown in Figure 4.1.

4.1 The Plan-Act-Learn Problem

A first brief and intuitive overview of the PAL problem is shown in Figure
4.2. At the beginning, the agent perceives the environment and associates the
perception with a new state of the planning domain. a set of sensors (e.g.
odometric sensors and RFIDs). Firstly, the agent perceives the environment
and builds a symbolic description of the environment about its current state.
Next, it plans to achieve a given goal starting from the symbolic representation
of its current state built so far. Then, the agent executes the plan, and after
each action execution, it updates the perception model used to map sensory
data into abstract states, and the extensional model of the planning domain,
which can be used for further planning.

A PAL-problem instance consists in learning an abstract model of the envi-
ronment that can be exploited by an agent to achieve a set of goals. In the PAL
problem, agents perceive the environment through a series of perceptions, where
a perception is a vector x = ⟨x1, x2, ..., xn⟩ of continuous real value variables,
called perception variables. We define the environment where agents operate as
a non-deterministic infinite-state transition system, called perceptible environ-
ment.

Definition 7 (Perceptible environment). A perceptible environment E is a tuple
(Q,A, τ), where Q ⊆ Rn is a (possibly infinite) set of perceptions, A is a finite
set of actions, and τ : Q×A→ 2Q is a non-deterministic transition function.

Function τ returns the set of possible perceptions after the execution of an
action a ∈ A in a state q ∈ Q (and before executing other successive actions).
We adopt the notation τ(a,X) =

⋃
x∈X τ(a,x) for X ⊆ Q.

38

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

move-down(robby)

move-right(robby)

move-right(robby)

pick-up(package)

−2
0

2

4

0

0.2

0.4

0.6

0.8

s0

s1

s2

move
-do

wn

move
-rig

ht
move

-do
wnPlan Act Learn

Figure 4.2: PAL problem overview

Specifying the components of a perceptible environment is typically ex-
tremely complicated, and it cannot be done by hand. In the field of planning,
a common assumption is that agents act at an abstract level. For instance, the
behavior of a robot moving packages among the rooms of a building can be
conveniently determined by a planning domain where each state corresponds to
the fact that the robot and packages are in a certain room, and each transi-
tion corresponds to an abstract action, such as moving the robot among rooms,
picking up packages, and putting down them. We define the search space for
planning as a deterministic finite-state transition system.

Definition 8 (Extensional model). An extensional modelM of an environment
E = (Q,A, τ) is a tuple (S,A, γ) where S is a finite set of (abstract) states, and
γ : S ×A→ S is a deterministic transition function.

Given a state s ∈ S and an action a ∈ A, the function γ outputs the resulting
state reached after the execution of a in s. The action space A of the extensional
model is the same as of the perceptible environment, which consists of the set
of actions agents can perform.

Definition 9 (Perception function). Given an extensional modelM = (S,A, γ)
of an environment (Q,A, τ), a perception function ρ for M is a function ρ :
Q × S → R+ such that for every s ∈ S, ρ(x, s) = p(x | s), where p(x | s) is a
probability density function on Q.

The extensional modelM and the perception function ρ share the same set of
states S. Given a perception function ρ and a perception x ∈ Q, we define
the function ρ∗ : Q → S as ρ∗(x) = argmaxs∈S ρ(x, s), and similarly ρ∗(X) =
{ρ∗(x) | x ∈ X}. Intuitively, ρ∗ is the function that discretizes the infinite set
of states Q into the finite set of states S.

Definition 10 (Plan). A plan in an extensional model M = (S,A, γ) from
state s ∈ S to state s′ ∈ S is a sequence (a1, . . . , am) of m actions in A such
that s′ = γ(am, γ(am−1, . . . , γ(a1, s))).

A perception goal is a perception x ∈ Q that, when perceived by the agent,
makes it consider the assigned task accomplished.

39

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Learner

Learning component

Perception
model

Extensional
model

Exploration
model

Modeling component

Current plan

Extensional
planner

Exploration
planner

Planning component

Execution and sensing

ActionPerception

Figure 4.3: PAL architecture. The square boxes represent modules; the circle
ones represent data.

Definition 11 (PAL-problem). Given an environment E, the PAL-problem
consists in learning an extensional model M and a perception function ρ from
E, such that, for every perception x0 ∈ Q and (non-empty) perception goal set
Xg ⊆ Q, M has a plan (a1, . . . , am) from ρ⋆(x0) to some state in ρ⋆(Xg) and
τ(am, τ(am−1, . . . , τ(a1,x0))) ∩Xg ̸= ∅.

Note that the agent does not know the environment E . The only knowledge
about the environment that it has is the one observed through the perception
variables when executing actions, as the agent can only perceive the environment
and observe the action effects after their execution.

4.2 Solving the PAL Problem

We introduce an approach for solving the PAL problem that interleaves planning,
acting, and learning using a limited amount of prior knowledge for the agent.
Our approach is named as the problem it solves, Plan-Act-Learn (PAL). To
learn the extensional model, the agent can apply different strategies: a random
exploration strategy is not feasible, since, as shown in [103], it does not scale
to large state spaces. Alternatively, the agent can use some prior belief about
the environment to decide a plan that will lead to its current goal. Following
this idea, we suppose that such a belief is expressed through an exploration
planning domain De that is specified by a planning language such as PDDL
[81]. Intuitively, the agent will decide the next action to perform by computing
a plan that reaches a state among those in an input set of goal states Ge from
the PDDL state se representing the belief of the agent about the current status
of the environment (the e index indicates that these are the initial state and set

40

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

of goal states of the exploration model).
Note that we make no assumption about the correctness of De; we only need

that the transformation used to derive se from the current status of the envi-
ronment is such that the inverse transformation applied to a goal state among
those in Ge derives a status of the environment corresponding to a perception
in Xg.

The architecture of the proposed solution is shown in Figure 4.3. The top
box of the picture shows the architecture of the PAL agent. It consists of three
components: (i) the learner module, (ii) the modeling component, formed by
three models, and (iii) the planning component using two kinds of planners.
The learner updates the perception model using the perceptions from the en-
vironment, incrementally constructs the extensional model, and revises the ex-
ploration model. We call the perception function, together with the history of
sensed perceptions, the perception model. The exploration model is refined when
a failure occurs in the attempt of executing an action. The extensional model
and the exploration one are respectively taken as input by the extensional and
exploration planner. Firstly, a plan is searched in the extensional model. The
search for such a plan may fail because the transition function γ known by the
agent at planning time could be incomplete. If no plan is found, the goal-driven
exploration strategy is applied by means of an exploration planner. The PAL
agent interacts with a simulator (bottom box in the picture), the purpose of
which is to simulate the perceptible environment E where the agent operates,
i.e., it simulates the execution of a given action and the sensing of the envi-
ronment immediately after the action execution. We assume that the simulator
knows the comprehensive definition of the transition function τ of E .

The pseudocode of PAL is shown in Algorithm 1. The algorithm takes as
input: a perception goal set Xg, a threshold t ∈ R, an initial perception function
ρinit, an initial extensional modelMinit, and an initial exploration model. The
input initial extensional modelMinit is composed of a (possibly empty) set of
states Sinit, a (possibly empty) transition function γinit, and a set of actions
A that agents can perform; the input initial exploration model is composed by
De

init, se, and Ge. Initially, the agent perceives the environment by sensing
perception x (Line 2). Afterward, it verifies whether there exists at least a state
among those in Sinit such that the likelihood of sensing x being in this state
is greater than a threshold. If it does exist the current state s is set to ρ∗(x),
otherwise a new state is created (Lines 3–8). The perception history is initialized
with the perception x and the current state s (Line 10). If the perception x
belongs to the set Xg, then s is a goal state and the algorithm returns success
(Lines 12–13). Otherwise, if the plan π is empty, the set of goal states Sg is
defined as the states in S which correspond to a goal perception xg ∈ Xg (Lines
15–16). A state s corresponds to a goal perception xg if ρ(xg, s) ≥ t. If the set
Sg is not empty, the extensional planner is exploited to search a plan π from
s to a state in Sg (Lines 17–18). The extensional planner runs the Dijkstra
algorithm on the graph induced by the state transition function γ, to find the
shortest-path from the current state s to a goal state in Sg defined in Line 16.

41

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Algorithm 1 PAL Algorithm
Input: Xg , t, ρinit ,Minit ,De

init , s
e, Ge.

1: ρ, S, γ,De, π ← ρinit, Sinit, γinit,De
init, ⟨⟩

2: x← sense()
3: S′ ← {s ∈ S | ρ(x, s) ≥ t}
4: if S′ = ∅ then
5: s← createState(x)
6: S ← S ∪ {s}
7: else
8: s← ρ⋆(x)
9: end if
10: P ← ⟨x, s⟩
11: while the CPU time limit is not exceeded do
12: if x ∈ Xg then
13: return Success;
14: end if
15: if π = ⟨⟩ then
16: Sg ← {s ∈ S | ρ(xg , s) ≥ t and xg ∈ Xg}
17: if Sg ̸= ∅ then
18: π ← extensionalPlanner(γ, s, Sg)
19: end if
20: if π = ⟨⟩ then
21: π ←explorationPlanner(De, se, Ge)
22: end if
23: end if
24: if π ̸=⟨⟩ then
25: π ←pop(π)
26: else
27: Select an action a ∈ A randomly
28: end if
29: execute(a)
30: x←sense()
31: S′ ← {s ∈ S | ρ(x, s) ≥ t}
32: if S′ = ∅ then
33: s′ ← CreateState(x)
34: S ← S ∪ {s′}
35: γ ← γ ∪ {(s, a, s′)}
36: se ←updatePddlState(De, se, a)
37: else
38: s′ ← ρ⋆(x)
39: if s′ = s then
40: D ←updatePddlDomain(De, se, a)
41: π ← ⟨⟩
42: else
43: se ←updatePddlState(De, se, a)
44: end if
45: end if
46: s← s′

47: P ←append(P, ⟨x, s⟩)
48: ρ←updatePerceptionFunc(ρ, P)
49: end while
50: return Failure

If the extensional planner does not find a plan, the agent searches for a
plan using the exploration model, i.e., it runs a PDDL planner to achieve goals
Ge from se, using the PDDL domain De (Lines 20–21). Note that, since the

42

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

exploration model is an approximation of the agent behavior in the real world,
it could happen that also this plan does not exist or, if it does exist, an action
in the plan is not executable in the real world. If the plan does not exist, an
action in A is randomly selected (Line 27). Otherwise, the first action of the
plan is selected (Lines 24–25) and executed (Line 29). After the execution of
the action (and before executing the next one), the agent perceives the current
environment state (Line 30). Notice that different sensing can correspond to
the same abstract state. This can happen for several reasons. For instance, two
very closed GPS perceptions (of a robot being in the same room) correspond
to the same abstract state. Furthermore, noisy perceptions done by the agent
while being idle should be mapped in a unique abstract state.

Given the last executed action a and the last perception x, the learner up-
dates the perception model, the extensional model, and the exploration model.
Specifically, if the probability of observing x from each state in S is lower than
threshold t, then the agent creates a new state s′, adds s′ to S, adds transition
⟨s, a, s′⟩ to γ and updates the PDDL state se (Lines 32–36). The state se is
updated according to De, i.e., adding the positive effects and deleting the nega-
tive effects of action a. Otherwise, the agent selects the state s′ that maximizes
the likelihood of observing x as the next state (Line 38). If the states in S
that maximize the likelihood of observing x are more than one, one of them is
randomly selected. If s = s′, i.e., the execution of action a fails, then the agent
makes plan π empty and updates the PDDL domain De in such a way that
action a cannot be executed in state se (Lines 39–41). If the action has been
successfully executed, the PDDL state is updated by applying the action effects
(Line 43). Finally, the current state s is set to the next state s′, the pair (x, s)
is added to the perception history P , and the perception function ρ is updated
according to P (Lines 46–48). The loop 11–49 is repeated until the CPU time
limit is exceeded. If the loop terminates without having reached a goal state,
the algorithm returns failure (Line 50).

4.3 Learning the Perception Function

The perception function ρ allows the agent to map a value x = (x1, . . . , xn)
of n perception variables to the state s∗ according to the maximum likelihood
criteria s∗ = argmaxsi∈S ρ(si,x). When the number of perception variables and
number of states in the extensional model is high, modeling ρ(si,x) with an n-
dimensional distribution p(x | s), as proposed by [103]), is extremely expensive
from the computational point of view and result infeasible. A practical simpli-
fying hypothesis can be obtained by assuming that ρ factorizes in n perception
functions, one for each perception variable. This means that

ρ(si,x) =

n∏
j=1

ρj(si, xj)

43

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

where each ρj(si, x) is an unidimensional probability density function. The
additional advantage of this factorization is that it allows to associate different
thresholds to each perception variable for the same state, instead of a single
threshold. We therefore replace the single threshold t in Algorithm PAL with
a vector t = (t1, . . . , tn) where ti ∈ R+ is the threshold associated to the i-th
perception variable. The set of abstract states on which we have to maximize
the likelihood in order to find the next state is thereby defined as

S′ = {si ∈ S | ρ(si,x) ≥ t}

where condition ρ(si,x) ≥ t stands for
∧n

j=1 ρj(si, xj) ≥ tj (steps 4, 18, 36 of
Algorithm PAL). A concrete, but still very general, model for a single variable
perception function which we decided to adopt is the normal distribution. We
therefore suppose that, for every state si and perception variable j, ρj(si, xj) is
the normal distribution N (xj | µij , σij) with mean µij and variance σij .

The parameters µij and σij can be learned online (step 55 of Algorithm
PAL). Given a sequence of m observations (x(k))mk=1 associated to the same
state si, the mean µij of the j-th perception variable is updated as follows:

µij =
2

m(m+ 1)

m−1∑
k=0

(m− k)x
(m−k)
j

For each perception variable, its mean in the state si is set to the normalized
weighted sum of all perception observations associated with the state si. The
first observation x(1) is the one associated with the state when it is created;
x(m) is the last perception associated with the state by procedure PAL. The
oldest the observation, the less weight is given. We assume that the standard
deviation σij keeps unchanged since given by the sensors, although in principle
our approach could learn it from the data.

The choice of the sequence t is important since it strongly affects the agent’s
capability to correctly build the extensional model. The higher the thresholds
the more states are created. With a very low threshold, redundant states can
be introduced, i.e., states that correspond to very similar perceptions; from
these states agents have to take the same decision to reach a goal state, and
hence they should be clustered in the same state. On the other hand, if the
thresholds are too low, then more than one abstract state is collapsed in a
unique extensional state. A reasonable setting for ti can be obtained by defining
ti = N (2σnoise,i|0, σnoise,i), where σnoise,i is the maximum measurement noise
of the sensor associated to the i-th perception variable.

4.4 PAL example

Example 4. Figure 4.4 shows an example of an agent, placed in an unknown
building with several rooms, which is asked to move a package between two dif-
ferent rooms. The agent is equipped with a position sensor ⟨xgps, ygps⟩, and an

44

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Environment

0.53

xgps

1.48

ygps

0.02

prfid

Perception
Sense

−2 0 2 40

0.2

0.4

0.6

0.8

Perception
model

Map

s0

s1

move-down

Extensional
model

Create state

s0

s1

move-down
Change state

(:action move

:parameters (?x ?y)

:precondition (and (at-robby ?x) (connected ?x ?y))

:effect (and (at-robby ?y) (not (at-robby ?x))))

Exploration model

Revise

Plan and Act

Figure 4.4: PAL example

RFID passive sensor that can receive signals from the RFID active tag prfid
attached to the package. Firstly, the agent perceives the environment through
its sensors. Afterward, the perception is mapped into a state of the extensional
model of the planning domain by means of a perception model. Given the per-
ception of the agent, if the likelihood of being in a state of the extensional model
of the planning domain is higher than a given threshold, then the agent cre-
ates a new state associated with such a perception. Otherwise, the extensional
model state that maximizes the likelihood of the perception is chosen and the
agent changes state. Next, the agent plans firstly with the extensional model
and then with the exploration model. If in the extensional model there is a plan
for reaching a goal state, then such a plan is executed. Otherwise, if no plan
can be computed in the extensional model learned so far by the agent, then the
agent plans by means of the exploration model.

4.5 Experimental Analysis

In our experimental analysis, we evaluate the effectiveness of the proposed ap-
proach and, in particular, the usefulness of using the exploration planner for
guiding the search. As exploration planner we used the well-known planner
FastDownward [50]. All experimental tests were conducted on an Intel Xeon
Skylake 2.3 GHz with 8 cores and 128 GB of RAM. The time limit for each run
of PAL was 60 minutes, after which termination was forced.

45

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

4.5.1 Benchmarks and simulators

Our benchmarks derive from three well-known planning domains: Logistics,
Grid, and Rovers. We assume that these domains are approximations of the
world where agents act. For instance, Logistics concerns moving packages among
cities by airplanes and trucks; in the real world, only a number of air routes are
permitted, while in the standard PDDL Logistics domain airplanes can move
between any pair of airports. This simplification could be adopted because, e.g.,
the exact network of the air routes is unknown to the domain model engineer.

For each of the considered domains, we developed a simulator that simulates
the physics of the domain with some discrepancies w.r.t. the available PDDL
model. Differently from the Logistics domain model, a number of air and road
routes are forbidden in the simulator. Specifically, all the airports but one
are partitioned into two sets, each airplane can visit airports in only one of
the two sets, plus a special airport that is not in either set. Similarly, all the
locations within each city are divided into two overlapping sets, each truck can
visit locations in only one of the two sets. We assume that GPS trackers are
installed on board of both trucks and airplanes, RFID readers are installed
on board of trucks as well as in storage areas, and that there are RFID tags
stuck on packages. The simulation of an action of the Logistics domain outputs
a perception consisting of readings made by GPS trackers and RFID readers.
The GPS coordinates of a location are random numbers ranging from 1500 to
30,000; each reading made by the GPS tracker of a vehicle at a certain location
is a pair of GPS coordinates corresponding to the location of the vehicle with
a noise ranging from 0 to 5; the reading made by the RFID reader at location l
for the RFID tag of package p is a random number ranging from 0.8 to 1, if p is
at l; it is a random number ranging from 0 to 0.2 otherwise; the same reading
is made by the RFID reader installed on board of a vehicle for the RFID tag of
a package.

Domain Grid concerns moving a robot among a grid of rooms, some of which
are closed by doors that can be opened by keys located in different rooms. A
robot can move from room x to room y only if the two rooms are adjacent in
the grid. Differently from the (standard PDDL) Grid domain, in the simulator
x and y need to be connected in order for the robot to move between the two
adjacent rooms, and only 3 over 4 adjacent rooms are connected. We assume

Table 4.1: Minimum and maximum number of domain states (1st column),
actions (2nd column), perception variables (3rd column), and number of states
learned by PAL with the Continue setting (4th column) over the instances of
our benchmark domains solved by PAL.

Domain S A PV LS

Logistics [e+21, e+219] [650, 151400] [269, 18152] [856, 4864]
Grid [e+07, e+35] [726, 26135] [47, 147] [204, 1983]
Rovers [e+10, e+68] [362, 33732] [165, 3961] [114, 1286]

46

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

that a GPS tracker and an RFID reader are installed on board of the robot,
keys have GPS trackers and RFID tags, and there are sensors mounted on doors
that detect whether doors are open or closed. The simulation of an action of the
Grid domain outputs a perception consisting of readings made by GPS trackers,
RFID readers, and door sensors.

The GPS coordinates of room (x, y) in the grid are (100 · x, 100 · y). The
reading made by the GPS tracker of the robot at a certain room is a pair of GPS
coordinates corresponding to the room coordinates with a noise ranging from
0 to 5; the same reading is done by the GPS trackers mounted on keys. The
reading made by the RFID reader of the robot for the RFID tag of a certain
key is a random number ranging from 0.8 to 1.0, if the key is grasped by the
robot; it is a random number ranging from 0 to 0.2 otherwise. Similarly, the
reading of the door sensors is a random number ranging from 0.8 to 1.0, if the
door is open; it is a random number ranging from 0 to 0.2, if the door is closed.

Domain Rovers concerns moving rovers on the surface of a planet, taking
images, collecting samples, and communicating images back to a lander. A rover
at a waypoint can take an image of an objective only if the objective is visible
from the waypoint. Similarly, a rover at a waypoint can communicate back data
to the lander only if the lander is visible from the waypoint. Differently from
the PDDL domain model, the simulator does not allow to take images at half
of the waypoints from which an objective is visible, and it does not allow to
communicate back data to the lander at half of the waypoints from which the
lander is visible. We assume that rovers have onboard GPS trackers, and that
there are sensors that output real numbers on the basis of the truth values of
facts of the domain. The simulation of an action of domain Rovers outputs a
perception consisting of readings made by GPS trackers and sensors.

The GPS coordinates of a waypoint are random numbers ranging from 0
to 3400; the reading made by the GPS tracker of a rover at a waypoint is the
same GPS coordinates as for the waypoint with a noise ranging from 0 to 5;
the reading of the sensors is a random number ranging from 0.8 to 1.0, if the
fact the sensor detects is true, it is a random number ranging from 0 to 0.2
otherwise.

We generated and tested the following PAL problems: 37 problems derived
from the largest instances of Logistics used in the first two International Plan-
ning Competitions (IPCs) [9, 82]; the 5 problems derived from the instances of
Grid used in the first IPC [82] plus 30 problems derived from randomly gener-
ated instances; and 40 problems derived from the instances of Rovers used in
the third IPC [36]. The initial and goal perceptions of the PAL problems were
derived from the initial states and sets of goals of the relative IPC problems.

4.5.2 Experimental results

The first experiment we conducted is running PAL with the IPC version of
the planning domain for the input exploration model, and empty models for the
input extensional and perception models. Algorithm 4.3 updates the exploration
model when the execution of an action a in a state fails so that, when the

47

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Figure 4.5: Average number of action-execution failures of PAL-NoUpdateEM
and PAL-UpdateEM with settings Repeat and Continue for 10 episodes of
domains Logistics, Grid, and Rovers.

exploration planner is run again from this state, the first action to execute in
the new plan is different from a.

For simplicity, in the current implementation of the (automatic) revision
of the exploration model, if the execution of an action fails in a state, the
model is modified in a way that such an action is never executable. Even if
the physics of the world encoded in the exploration model and in the simulator
have discrepancies (as previously described), PAL using FastDownward can solve
30 over 37 instances of Logistics, and all the instances of Grid and Rovers.
Table 4.1 shows that PAL using the exploration model is able to solve quite
large problems. On the contrary, PAL without an exploration model solves no
problem of our benchmarks, because it explores the world states randomly and
only tiny problems where goals are ”accidentally” reached can be solved.

Then, we tested PAL with non-empty input extensional and perception mod-
els. For each PAL problem, we repeatedly ran PAL with two different settings.
In the first setting, PAL is run with the same initial and goal perceptions as
those of the PAL problem. We call each of these run an episode. In the second
setting, for each PAL problem, we constructed a set Xg of goal perceptions de-
rived from randomly generated sets of PDDL goals. For the first episode, PAL is
run with the same initial and goal perceptions as those of the PAL problem; for
each other episode, PAL is run with the last perception sensed in the previous
episode as initial perception and a perception among those in Xg as goal per-
ception. Essentially, for this second setting PAL continues to plan for incoming
goals. In the following, the first and second settings are called Repeat and
Continue, respectively.

We considered ten episodes and two versions of PAL. For both versions,
the input knowledge is the same but the exploration models are different. For
every episode except the first one, the extensional and perception models are
those derived at the end of the previous episode; for the first episode they are
empty. One of the two versions of PAL has in input the IPC domain model as
exploration model, the other version has in input the exploration model derived
at the end of the previous episode. We denote these two versions of PAL with
PAL-NoUpdateEM and PAL-UpdateEM, respectively.

Figure 4.5 shows the number of action-execution failures of PAL-NoUpdateEM
and PAL-UpdateEM for settings Repeat and Continue. Since the exploration
model is an approximation of the real world, the execution (through the sim-

48

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Figure 4.6: Average CPU-time of PAL using the Repeat setting with/without
the exploration model (EM) for up to 10 episodes of domains Logistics, Grid,
and Rovers.

ulator) of an action in the plan computed by the exploration planner can fail.
The results in Figure 4.5 show that for both settings Repeat and Continue
the number of failures when the exploration model is updated is significantly
lower than when no update is done among the episodes. For the Repeat setting
and every considered domain, the number of failures reduces nearly to zero at
the fifth episode. Remarkably, even for the Continue setting the number of
failures tends to decrease and is close to zero after few episodes, showing the
usefulness of the learned knowledge.

When the agent’s goals are satisfied in a state previously reached (and
learned) by the agent, using the extensional planner can provide great compu-
tational benefits. This is because, typically, the (learned) state space searched
by the extensional planner is much smaller than the state space induced by the
exploration model searched by the exploration planner. To evaluate these ben-
efits, we conducted an experiment using the Repeat setting. First, we run PAL
using the exploration planner; then, we run PAL without using the exploration
planner but having the extensional and perception models learned by PAL in
the first run (that used the exploration planner). Figure 4.6 shows the average
CPU time of PAL with/without the exploration planner for up to ten episodes.
For all the instances and episodes greater than 8 in Logistics, and greater than
5 in Grid, we have no action-execution failure for PAL using the exploration
planner; hence the performance gap is the same as for the last episode shown
in the figure. As expected, the CPU time of PAL using only the extensional
planner is lower than when using the exploration planner. However, achieving
the goal by the extensional planner is still, somewhat surprisingly, quite expen-
sive. This is because determining the next current state of the agent from the
sensed perception can be computationally much expensive when the number of
perception variables and (learned) states in the extensional model is high.

To determine the next state, we filter the set of previously reached (learned)
states according to the set J of perception variables that have been significantly
changed by the execution of the last action. The next state is selected from the
set of states satisfying ρj(xj | s) > tj for each perception j ∈ J according to the
max-likelihood criteria. If this set is empty, then a new state is introduced.

In Figure 4.7, such a strategy is denoted by “State filtering”. Finally, we
consider another strategy. If the perception x is obtained by executing action
a in state s and the extensional model contains the transition (s, a, s′), then, if

49

CHAPTER 4. LEARNING PLANNING DOMAINS FROM SENSOR DATA

Figure 4.7: Average CPU-time of PAL with the Continue setting using five
different methods for determining the next search state for 10 episodes of domain
Logistics.

Figure 4.8: Average CPU-time for planning, determining the next search state,
and total time required by PAL with the Continue setting for each episode
among 10 episodes of domains Logistics, Grid, and Rovers.

for each perception variable i the likelihood of sensing xi being in s′ is above
threshold ti, the next state is s′. We run PAL using such a strategy together
with the strategy for filtering states; this version of PAL is denoted by “State
filtering + early termination”. The results in Figure 4.7 show that, on average,
for Logistics the filtering of states significantly improves the performance, while
the speedup obtained using the early termination is negligible.

Figure 4.8 shows, for the Continue setting, the average CPU time required
by PAL for planning and for determining the next state w.r.t. the average total
CPU time. For the last episodes, determining the next state is more time-
consuming than using the exploration planner. This is because, for the last
episodes, (i) the number of action-execution failures is low or zero, and hence the
number of times the exploration planner is run is also low; (ii) the computational
cost required to determine the next states increases with the number of visited
states, which progressively increases with the episodes.

50

Chapter 5

Online Learning of Action
Models

Several works have addressed the task of learning action models, and have pro-
vided important results from different perspectives and according to different
assumptions, see, e.g., Section 3.2.

However, most of the recent and state-of-the-art methods perform learning
offline, and require as input a set of plan traces generated by previously exe-
cuted actions. This has two major drawbacks. First, often agents need to learn
the model of the domain online, because they need to explore an unknown en-
vironment, acquire information, and learn a model by experimenting with the
execution of their actions incrementally, step by step. This is the case of many
applications in robotics, e.g., in SLAM [108], where the robot tries to build a
map of the environment by exploration, or in the Robocup Rescue [60], where
the robot needs to explore the environment to perform a rescue task. Second,
previous work on learning action models does not deal with the problem of gen-
erating informative plan traces. As stated in the conclusions of [4], generating
informative plan traces for learning planning action models is still an open issue.
Indeed, if the available set of plan traces does not contain informative examples,
there is little chance to learn all action preconditions, since some preconditions
can be only discovered by specific plans that can unlikely be generated randomly
[35].

We propose a new approach that does not suffer these drawbacks, focusing
on the case of learning strips action schema expressed in pddl, and under the
assumption of full observability of the states reached by the agent. We propose
an algorithm, called OLAM algorithm (Online Learning of Action Models), for
learning action models online, incrementally during the execution of plans. A
key aspect of OLAM is that it combines and interleaves the activity of learning
action preconditions and effects with an exploration phase that selects which
plan to execute. In this way, OLAM generates plan traces to reach certain goal
states, decided online, which are useful for the learning task.

51

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 5.1: OLAM within the agent environment interface.

Beyond proving termination, we analyze our algorithm to show some impor-
tant theoretical properties that are defined according to the state transitions
of the models learned by the algorithm. In particular, we prove that OLAM is
correct, i.e., it learns action models which generate only the state transitions
generated by the planning domain modeling the true environment where the
agent acts. Moreover, OLAM is “integral”, i.e., it learns action models that gen-
erate all the transitions of the true environment with respect to the states that
can be reached by the algorithm.

We also provide substantial empirical evidence of the good learning perfor-
mance of OLAM using a large set of benchmarks from the International Planning
Competitions (IPCs). Finally, we experimentally compare OLAM with a recent
and state-of-the-art method for learning action models offline, showing that
online learning can be much more effective.

With respect to the agent-environment interface shown in Figure 1.2, OLAM

focuses on: (i) learning the environment module, since it learns the action pre-
conditions and effects which describe the environment dynamic; (ii) the planner
module, since OLAM plans to reach informative states from which it can learn by
attempting to execute an action. In particular, there is no focus on the percep-
tion function module, since OLAM directly perceives the world through symbolic
observations, which are assumed to be correct and complete. Finally, there is
the simplifying assumption that symbolic actions can be executed by the agent,
and that there is feedback about their successful/unsuccessful execution.

5.1 Action Model Learning Problem

Assuming that the sets P, O and C are known by the agent, its task is to
learn a planning domain by executing the actions available in O over constants
in C, observing, and determining what are their preconditions and effects on
the environment described in terms of the properties in P. In formal terms,
the agent has to build an action model M = ⟨P,O,H⟩, i.e., the preconditions
and effects of every action schema in the domain of H. We assume that
the dynamics of the environment where the agent acts, which is unknown by
the agent, is fully described by the finite state machine M′(C), where M′ =
⟨P,O,H′⟩ is an action model called Ground-Truth Model (GTM).

The following definitions state the notions of correctness and integrity for
the learned planning domainM = ⟨P,O,H⟩ w.r.t. the GTM.

52

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Definition 12 (Correctness). LetM andM′ be two action models andM(C) =
⟨S,A, δ⟩ andM′(C) = ⟨S,A, δ′⟩ be their FSMs with respect to a set of constants
C. We say that

1. M(C) correctly approximates M′(C) from a state s0 ∈ S if, for every
state sn reachable from s0 in M(C), ⟨sn, a, s⟩ ∈ δ implies ⟨sn, a, s′⟩ ∈ δ′

for some s′ ⊇ s.

2. M(C) correctly approximatesM′(C) ifM(C) correctly approximatesM′(C)
from every state in S;

3. M correctly approximatesM′ ifM(C) correctly approximatesM′(C) for
every set of constants C.

A plan is valid when the actions in the plan are “executable” and the plan
achieves a given set of (positive) goals. Therefore, when the learned model
correctly approximates the GTM, any valid plan computed by using the learned
model is also valid for the GTM.

Definition 13 (Integrity). Let M and M′ be two action models and M(C) =
⟨S,A, δ⟩ andM′(C) = ⟨S,A, δ′⟩ be their FSMs with respect to a set of constants
C. We say that

1. M(C) integrally approximates M′(C) from a state s0 ∈ S if, for every
state sn reachable from s0 in M(C), ⟨sn, a, s′⟩ ∈ δ′ implies ⟨sn, a, s⟩ ∈ δ
for some s ⊇ s′;

2. M(C) integrally approximates M′(C) if M(C) integrally approximates
M′(C) from every state in S;

3. M integrally approximates M′ if M(C) integrally approximates M′(C)
for every set of constants C.

Therefore, when the learned model integrally approximates the GTM, any valid
plan for the GTM is also a valid plan for the learned model.

5.2 OLAM Algorithm

In the proposed approach, the agent constructs and executes informative plan
traces for learning the planning domain. Algorithm 2 shows the pseudocode of
the OLAM (Online Learning of Action Models). The input of the algorithm is
the same sets of predicates and operator names (with their associated arity) of
the GTM, and a set C of constants representing the objects of the environment
explored by the agent. OLAM produces in the output two planning domainsM
andM−

? . The former is such thatM(C) correctly and integrally approximates
M′(C) from the state of the environment when OLAM terminates. The latter
correctly approximatesM′.

We adopt the following notations. Let x = ⟨x1, . . . , xn⟩ and c = ⟨c1, . . . , cn⟩
two n-tuple of distinct parameters and constants. If p is anm-ary predicate, p(x)

53

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

denotes an atom p(xi1 , . . . , xim) for some m-tuple of indexes 1 ≤ i1, . . . , im ≤ n;
and p(c) the atom obtained by replacing xi with ci in p(x). In the following,
the indexing will be left implicit. OLAM incrementally builds the following sets:

1. pre(op), which contains the preconditions of the operator op; it is initialized
to the whole set of lifted atoms (line 2); an atom p(x) is removed from
pre(op) whenever an instance op(c) of op is executed successfully in a state
s and p(c) ̸∈ s (line 19).

2. eff+
! (op) and eff−

! (op), which contains the set of lifted positive and negative
effects of op learned by the agent; they are initially empty (line 3); a lifted
atom p(x) is added to eff+

! (op) (resp. eff−
! (op)) if the execution of an

instance op(c) of op in state s makes p(c) become true (resp. false) in the
resulting state (lines 20-21).

3. eff+
? (op) and eff−

? (op), which are sets of lifted atoms that could become
part of the positive or negative effects of op; they are initialized to the
entire set of lifted atoms (line 2); a lifted atom p(x) is removed from
eff+

? (op) (resp. eff
−
? (op)) if p(x) is discovered to be a positive or negative

effect or if the atom p(c) is false (resp. true) in a state s and remains false
(resp. true) after executing successfully an instance op(c) of op in s (lines
22-23).

4. pre⊥(op), which is a set of sets of lifted preconditions for op such that
in every non-empty set in pre⊥(op) there is at least one precondition of
op; pre⊥(op) is initialized to a set including only the empty set (line 4);
pre⊥(op) is augmented by the set formed by any lifted fact p(x) such that
p(c) is false in a state s, if the execution of an instance op(c) of op fails in
s (line 26).

5. eff+
!?(op) and eff−

!?(op), which are derived sets denoting eff+
! (op)∪ eff

+
? (op)

and eff−
! (op) ∪ eff−

? (op).

Let denote the sets of preconditions and positive/negative effects of any

operator op ofM′ by pre′(op) and eff ′+/−
(op), respectively. The update of the

sets built by OLAM guarantees that pre(op) is a superset of pre′(op), eff
+/−
! (op)

are subsets of eff ′+/−
(op), and eff

+/−
!? (op) are superset of eff ′+/−

!? (op).
At each iteration of the external loop (lines 7–31), the agent selects a state

s′ and a ground action op′(c′). s′ is reachable from the current state with the
modelM learned so far; the ground action op′(c′) is such that its execution in
s′ could provide to the agent some additional information about the precondi-
tions, the positive, or the negative effects of op′. This condition is formalised
by (5.1)–(5.3). In particular, if condition (5.1) holds, the preconditions of op′

could be refined by executing op′(c′) in s′, because s′ does not contain all the
preconditions of op′(c′). Indeed if op′(c′) will succeed, then the preconditions
which are false in s′ can be eliminated. If condition (5.2) (resp. (5.3)) holds,
some positive (resp. negative) effects of op′ could be learned, because op′(c′)

54

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Algorithm 2 OLAM

Input: M = ⟨P,O, {par(op), ∅, ∅}op∈O⟩, C.
1: s← observe()
2: ∀op ∈ O, eff−

? (op)← eff+
? (op)← pre(op)← P(par(op))

3: ∀op ∈ O, eff−
! (op)← eff+

! (op)← ∅
4: ∀op ∈ O, pre⊥(op)← {∅}
5: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff
−
! }op∈O

〉
6: π ← nil
7: while ∃s′, op′(c′) such that s′ is reachable from s byM(C) and (5.1)∨(5.2)∨

(5.3) holds do
8: π ← Plan(M(C), s, s′)
9: while π ̸= nil do

10: if π ̸= ⟨⟩ then
11: op(c)← pop(π)
12: else
13: op(c)← op′(c′)
14: π ← nil
15: end if
16: x← par(op)
17: if Execute(op(c)) does not fail then
18: snext ← Observe()
19: pre(op)← {p(x) ∈ pre(op) | p(c) ∈ s}
20: eff+

! (op)← eff+
! (op) ∪ {p(x) | p(c) ∈ snext \ s}

21: eff−
! (op)← eff−

! (op) ∪ {p(x) | p(c) ∈ s \ snext}
22: eff+

? (op)← eff+
? (op) \ {p(x) | p(c) /∈ s ∩ snext}

23: eff−
? (op)← eff−

? (op) \ {p(x) | p(c) ∈ s ∪ snext}
24: s← snext
25: else
26: pre⊥(op)←pre⊥(op) ∪ {{p(x)∈pre(op)|p(c) ̸∈s}}
27: π ← nil
28: end if
29: M←

〈
P,O, {par(op), pre(op), eff+

! (op), eff
−
! }op∈O

〉
30: end while
31: end while
32: M−

? ←
〈
P,O, {par(op), pre(op), eff+

! (op), eff
−
!?}op∈O

〉
33: return M,M−

?

Conditions in line 7:

pre(op′(c′)) \ s′ ̸∈ pre⊥(op
′(c′)) (5.1)

pre(op′(c′)) ⊆ s′ and eff+
? (op

′(c′)) ̸⊆ s′ (5.2)

pre(op′(c′)) ⊆ s′ and eff−
? (op

′(c′)) ∩ s′ ̸= ∅ (5.3)

55

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

room1

room2 room3 room4

room1

room2 room3 room4

(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY)

(at-robby ?roomY))

:effect (and

(at-robby ?roomY)

(not (at-robby ?roomX))))

(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY)

(at-robby ?roomY))

:effect ()

⇓
move(room2, room3)

Act Learn

Figure 5.2: Successful action execution.

is executable in s′ and s′ does not contain all the facts in eff+
? (op

′(c′)) (resp.
contains at least a fact in eff−

? (op
′(c′))). Indeed, the facts in eff+

? (op
′(c′)) but

not in s′ which becomes true can be added to the positive effects. Similarly, the
facts that are in eff−

? (op
′(c′))) and in s′ which becomes false can be added to

the negative effects. The selection of such a state s′ and action op′(c′) is done
by constructing a plan from the current state s to a state s′ which satisfies con-
ditions (5.1)–(5.3) for an op′(c′) (line 8). If there is more than one action op′(c′)
that satisfies conditions (5.1)–(5.3) in s′, one of them is randomly selected. The
choice of s′, op′(c′) and the associated plan is obtained by invoking Plan with
the following goal:

G =
∨

op(c)∈A
P+P−E+E−satisfy (i–vi)

 ∧
p(c)∈P+∪E−

p(c) ∧
∧

p(c)∈P−∪E+

¬p(c)

 (5.4)

(i) P− ∪ E+ ∪ E− ̸= ∅, (ii) P+ ∩ P− = ∅,
(iii) P+ ∪ P− = pre(op(c)), (iv) P− ̸∈ pre⊥(op(c)) \ {∅},
(v) E+ ⊆ eff+

? (op(c)), (vi) E− ⊆ eff−
? (op(c)).

Each disjunct in (5.4) describes a set of states from which the agent can
potentially learn something by executing op(c). P+ and P− partition the pre-
conditions of op(c) so that the atoms in P+ are true in s′, the atoms in P−

are false in s′, and set P− has not already been checked to be necessary for
successfully executing op(c). E+ is a subset of possible positive effects of op(c)
which are false in s′ and can become true by executing op(c); similarly for E−.
Notice that for every state s′ that contains P+ and E− and does not contain
P− and E+, and every action op′(c′) such that (iv) and (v) and (vi) hold, when
condition (5.1) is satisfied by s′ and op′(c′), P− is not empty; when condition
(5.2) is satisfied by s′ and op′(c′), E+ is not empty; finally, when condition (5.3)
is satisfied by s′ and op′(c′), E− is not empty.

56

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

room1

room2 room3 room4

room1

room2 room3 room4

(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY))

:effect (and

(at-robby ?roomY)

(not (at-robby ?roomX))))

(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY))

:effect (and

(at-robby ?roomY)

(not (at-robby ?roomX))))

⇓
move(room3, room1)

Act Learn

Figure 5.3: Example of action execution failure.

In the internal loop (lines 9–30), OLAM executes π and if it manages to suc-
cessfully complete the execution of π (i.e., π = ⟨⟩, line 10) the ground action
op′(c′) will be executed in the environment where the agent acts (line 17). The
dynamics of such an environment is unknown by the agent, and it determines
the result returned by Execute(op(c)). When a ground action op(c) is success-
fully executed, OLAM observes the state of the environment snext resulting from

the execution (line 18), and updates sets pre(op), eff
+/−
! (op) and eff

+/−
? (op)

according to the criteria defined above (lines 19–23), an example of successful
action execution is shown in Figure 5.2. If the op(c) execution fails in the en-
vironment, pre⊥(op) is extended as described above, and π is reset to nil since
its execution deviates from the expected trajectory computed according to the
domainM learned so far (lines 26-27). An example of action execution failure
is shown in Figure 5.3.

5.3 OLAM Example

Figure 5.4 shows an iteration application example of the OLAM algorithm.
At the beginning, the agent observes the current status of the environment, i.e.
that there is a set of linked rooms, the agent is in room4 and the package in
room9. Next, the agent computes a goal that can be focused on learning new
effects, removing preconditions or confirming them, for learning the action model
of the “move” operator. Suppose that the operator “move” has two uncertain
preconditions, i.e. “(link ?roomX ?roomY)” and “(link ?roomY ?roomX)”, then
the goal specified in Figure 5.4 identifies the goal states where exactly one of
these preconditions is false. Indeed, in such goal states, the agent can try to
execute an action of type “move” and check whether these preconditions are
necessary or not. Afterward, the agent plans to reach a goal state and test some
preconditions or effects. Typically, at the beginning, the agent’s initial state is

57

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Environment

(at robby room4)

(at package room9)

...

(link room8 room9)

PDDL state s

Observing

exists(r1 - room r2 - room)((or

(and (link r1 r2) (not(link r2 r1)))

(and (not(link r1 r2)) (link r2 r1))

))

GoalGoal
specification

move(room4, room7)

move(room7, room8)

move(room8, room9)

pickup(package)

learning action

Plan

Planning

execute(a)

a = pop(plan)(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY))

:effect (and

(at-robby ?roomY)

(not (at-robby ?roomX))))

Confirm certain preconditions

Fail

(:action move

:parameters (?roomX ?roomY)

:precondition (and

(at-robby ?roomX)

(link ?roomX ?roomY)

(at-robby ?roomY))

:effect (and

(at-robby ?roomY)

(not (at-robby ?roomX))))

Remove preconditions and add effects

Success

Figure 5.4: OLAM Example.

already a goal one, hence the plan contains only the action whose preconditions
or effects could be learned, denoted as the “learning action” in Figure 5.4.
Whenever the agent executes a “learning action”, if the execution fails, then it
confirms some action preconditions, since there is at least one real precondition
that is not satisfied in the current state. Otherwise, if the execution succeeds,
the agent can remove action preconditions that are not satisfied and learn new
effects by comparing the destination state with the previous one. Finally, the
agent again observes the environment status and so on, until no more learning
states can be reached.

5.4 Termination, Correctness, and Integrity

Given an n-ary operator, we assume that it can be grounded only with n differ-
ent constants. This assumption can be done without loss of generality, at the
price of introducing additional operators with only one parameter in place of
the set of parameters that can be grounded with the same constant. We also
suppose that OLAM is run in the environmentM′(C) where C is a set of at least
maxop∈O |par(op)| constants.

In the following, the transitions relations ofM,M′, andM−
? are denoted by

δ, δ′, and δ−? . Moreover, the sets of preconditions and positive/negative effects

of any operator op ofM′ are denoted by pre′(op) and eff ′+/−
(op), respectively.

Lemma 1. For every n-ary operator op with parameters par(op) = x = (x1, . . . , xn),
every m-ary predicate p, and every n-tuple of distinct constants c = (c1, . . . , cn)

58

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

in C:

1. p(c′) ∈ pre(op(c)) iff p(x′) ∈ pre(op)

2. p(c′) ∈ eff+(op(c)) iff p(x′) ∈ eff+(op)

3. p(c′) ∈ eff−(op(c)) iff p(x′) ∈ eff−(op)

where c′ = (ci1 , . . . , cim) and x′ = (xi1 , . . . , xim) with 1 ≤ ij ≤ n for 1 ≤ j ≤ m.

Proof. Let us consider case 1 (similar proofs can be derived for cases 2 and 3).
Since pre(op) cannot contain constants, the only way to obtain p(c′) in pre(op(c))
is by grounding some precondition p(x′) ∈ pre(op) with c′. Since we require that
every parameter in par(op) is instantiated with a different constant, the only way
to obtain p(ci1 , . . . , cim) is when x′ = (xi1 , . . . , xim). The opposite direction
derives by the fact that if p(x′) ∈ pre(op), by grounding op’s parameters in
p(x′) with c′, we obtain p(c′) ∈ pre(op(c)).

Lemma 2. At every execution step of OLAM pre(op) ⊇ pre′(op).

Proof. In OLAM, pre(op) is initialized by P(par(op)), i.e., all the possible precon-
ditions on the parameters of op (line 2). Then, a precondition p(x) is removed
from pre(op) when an action op(c) is executed with success in s and p(c) ̸∈ s.
(line 19). This implies that p(c) ̸∈ pre′(op(c)). By lemma 1 we have that
p(x) ̸∈ pre′(op). This guarantees that at every execution step of the algorithm
pre(op) ⊇ pre′(op).

Lemma 3. At every execution step of OLAM, if pre(op(c)) ⊆ Observe(), then
Execute(op(c)) does not fail.

Proof. Let s = Observe() be the result of the observation of the environment
at some execution step of OLAM, i.e., the current state according to M′(C).
By Lemmas 1-2, if pre(op(c)) ⊆ s then pre′(op(c)) ⊆ s, which guarantees that
action op(c) can be executed with success from the current state according to
M′(C).

Theorem 1 (Termination). Algorithm OLAM terminates.

Proof. First of all, notice that for every operator op the following properties
hold:

– The size of P(par(op)) and 2P(par(op)) are finite and therefore pre(op),
eff+

? (op), eff
−
? (op) are initialized to finite sets, eff+

! (op), eff
−
! (op) cannot

be larger than P(par(op)), and pre⊥(op) cannot be larger then the size of
2P(par(op)).

– The internal loop (lines 9–30) always terminates because at every iteration
either the size of the the plan reduces by 1 unit, or the plan is set to nil,
and if the size is 0 the plan is set to nil.

59

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Given the above points, to show termination, we have to prove that at every
iteration of the external loop (7–31) one of the following facts holds for some
operator op:

(a) the size of pre(op), eff+
? (op), or eff

−
? (op) is reduced;

(b) the size of pre⊥(op), eff
+
! (op), or eff

−
! (op) is increased.

At each iteration of the external loop (lines 7–31) OLAM selects an action op′(c′)
and a state s′ reachable from the current state s withM that satisfy condition
((5.1)), (5.2) or (5.3). It produces a plan π = (a1, . . . , ak) from the current
state to s′, and it executes the plan in the internal loop (lines 9–30). We
consider separately the case where (i) π is successfully executed and the state
s′ is achieved, and (ii) the execution of π fails or the reached state is different
from s′.

(i) π successfully achieves s′: after k iterations of the internal loop, plan π
becomes empty, and the condition at line 10 becomes true. Then, op′(c′)
is executed in s′ (line 11). If op′(c′) is executed successfully, then since
op′(c′) and s′ satisfies at least one of the three conditions ((5.1), (5.2)
and (5.3)), the following applies. If (5.1) holds then pre(op(c)) \ s′ ̸= ∅
and therefore pre(op′) is reduced (line 19); if (5.2) holds then eff+

? (op)
is reduced (line 22); if (5.3) holds then eff−

? (op) is reduced (line 23). If
op′(c′) fails in the state s′ (line 25), then by Lemma 3 it means that
pre(op′(c′)) ̸⊆ s′, and therefore conditions ((5.2)) and ((5.3)) are false,
which implies that condition ((5.1)) is true. This guarantees that at line
26 pre⊥(op) is extended.

(ii) π fails to achieve s′: Since plan π is computed according to M and,
by Lemmas 1-2, for any action op(c) the set of preconditions of op(c) in
M(C) contains the preconditions of op(c) in M′(C), then the failure of
π implies that after j ≤ k iterations of the internal loop, the observed
state (computed by executing a1, . . . , aj from s inM′(C)) is different from
the state computed by executing a1, . . . , aj from s in M. Let i be the
smallest of such a j, and ai = opi(ci). Then (si−1, opi(ci), si) ∈ δ and
(si−1, opi(ci), s

′
i) ∈ δ′ with s′i ̸= si. Since ai−1 = opi−1(ci−1) modifies only

the atoms containing the constants ci−1 contained in si and s′i differ on
some p(ci−1). If p(ci−1) ∈ s′i \ si then, at the i − 1-th iteration of the
internal loop, eff+

! (opi−1) is extended (line 20); if p(ci−1) ∈ si \ s′i, then
eff−

! (opi−1) is extended (line 21).

Lemma 4. At every execution step of OLAM, eff
+/−
! (op) ⊆ eff ′+/−

(op).

Proof. In OLAM, eff
+/−
! (op) are initialized by the empty set (line 3), and there-

fore eff
+/−
! (op) ⊆ eff ′+/−

(op) initially holds. Suppose that at some point
p(x) ∈ eff+

! (op). Then, there exists a state s and an action op(c) such that

60

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

the execution of op(c) from s adds p(x) to eff+
! (op), which implies p(c) ̸∈ s and

p(c) ∈ snext (line 20), where snext is the state resulting from the execution of

op(c) in M′(C). Since snext ⊆ s ∪ eff ′+(op(c)), then p(c) ∈ eff ′+(op(c)). By

Lemma 1, we have that p(x) ∈ eff ′+(op). A similar proof can be done to show

that eff−
! (op) ⊆ eff ′−(op).

Lemma 5. At every execution step of OLAM, eff
+/−
!? (op) ⊇ eff ′+/−

(op).

Proof. In OLAM, eff−
? (op) is initialized by P(par(op)) (line 2), and therefore

eff−
!?(op) ⊇ eff−

? ⊇ eff ′−(op) initially holds. Suppose that at some point p(x) ̸∈
eff−

!?(op). This means that there is a state s and an action op(c) such that
the execution of op(c) from s removes p(x) from eff−

? (op), which implies that

p(c) ∈ s ∪ snext (line 21), where snext = s ∪ eff ′+(op(c)) \ eff ′−(op(c)) is the
state resulting from the execution of op(c) in M′(C). If p(c) ̸∈ snext then
p(c) ∈ s and this implies that p(x) is added to eff−

! (op), which contradicts the
fact that p(x) ̸∈ eff−

!?(op); therefore we have that p(c) ∈ snext, which implies

that p(x) ̸∈ eff ′−(op), as required.
In OLAM, eff+

? (op) is initialized by P(par(op)) (line 2), and therefore eff+
!?(op) ⊇

eff+
? ⊇ eff ′+(op) initially holds. Suppose that at some point p(x) ̸∈ eff+

!?(op).
This means that there is a state s and an action op(c) such that the execution
of op(c) from s removes p(x) from eff+

? (op), which implies that p(c) ̸∈ s∩ snext
(line 22), where snext = s∪ eff ′+(op(c)) \ eff ′−(op(c)) is the state resulting from
the execution of op(c) inM′(C). Let us distinguish whether or not p(c) ∈ snext.

If p(c) ̸∈ snext then p(x) ̸∈ eff ′+(op), as required. If p(c) ∈ snext then p(c) ̸∈ s,
which implies that that p(x) is added to eff+

! (op(c)) at line 20 and therefore
p(x) ∈ eff+

?!(op), which contradicts the hypothesis that p(x) ̸∈ eff+
?!(op).

In the rest of the section, we study the properties of correctness and integrity
for the learned modelsM andM−

? .

Theorem 2 (Correctness ofM−
?). M

−
? correctly approximatesM′.

Proof. Let s be a state ofM−
? (C′) for any set of constants C′ possibly different

from C, and let (s, op(c), s−?) ∈ δ−? . By Lemmas 1-2, pre(op(c)) ⊇ pre′(op(c))
and therefore there exists a tuple (s, op(c), s′) ∈ δ′. We have that s−? = s ∪
eff+

! (op(c)) \ eff
−
! (op) \ eff

−
? (op). By Lemmas 1-4, eff+

! (op(c)) ⊆ eff ′+(op(c));

by Lemmas 1-5, eff ′−(op(c)) ⊆ eff−
!?(op(c)) = eff−

! (op(c)) ∪ eff−
? (op(c)). Since

s′ = s ∪ eff ′+(op(c)) \ eff ′−(op(c)), it must be that s−? ⊆ s′.

Theorem 3 (Correctness ofM). M(C) correctly approximatesM′(C) from the
final state of OLAM.

Proof. Let s reachable from sf in M(C). Suppose that (s, op(c), s′′) ∈ δ.
By Lemmas 1-2, pre(op(c)) ⊇ pre′(op(c)) and therefore there exists a tuple
(s, op(c), s′) ∈ δ′. Suppose that s′′ ̸⊆ s′, which implies that there is a p(c) ∈ s′′

which is not in s′. This can be caused by some missing negative effect in eff−
! (op)

61

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

or some extra positive effect in eff+
! (op). The latter case is excluded by Lemma 4.

Suppose that p(x) ∈ eff ′−(op) but p(x) ̸∈ eff−
! (op). From Lemma 5 we have that

eff ′−(op) ⊆ eff−
!?(op). The fact that eff

−
! (op) ⊆ eff ′−(op) implies p(x) ∈ eff−

? (op).
Since s is reachable from the final state sf viaM, then condition ((5.3)) must
be false, which means that eff−

? (op(c)) ∩ s = ∅, and therefore that p(c) ̸∈ s.

Therefore if p(c) ∈ s′′, then it has been added by p(x) ∈ eff+
! (op) ⊆ eff ′+(op).

But this contradicts the fact that p(x) ∈ eff ′−(op).

Lemma 6. At any execution step of OLAM if ϕ ∈ pre⊥(op) and ϕ ̸= ∅ then
ϕ ∩ pre′(op) ̸= ∅.

Proof. If ϕ ∈ pre⊥(op) and ϕ ̸= ∅, then ϕ has been added because of the failure
of an action op(c) in a state s and ϕ = {p(x) ∈ pre(op) | p(c) ̸∈ s}. The failure
of op(c) in s implies that there is a p(x) ∈ pre′(op) such that p(c) ̸∈ s. The fact
that pre(op) ⊇ pre′(op) implies that p(x) ∈ ϕ and therefore p(x) ∈ ϕ ∩ pre′(op).
Hence we can conclude that ϕ ∩ pre′(op) ̸= ∅.

Theorem 4 (Integrity of M). M(C) integrally approximates M′(C) from the
final state of OLAM.

Proof. Suppose that s is reachable from the final state of OLAM viaM(C) and
that op(c) is executable from s according to M′(C), i.e., that pre′(op(c)) ⊆ s.
First, let us show that op(c) is also executable byM(C), i.e., that pre(op(c)) ⊆ s.
Suppose the contrary, i.e., that pre(op(c)) \ s ̸= ∅. Since s is reachable from
sf with M(C), the fact that OLAM terminates at sf implies that condition
((5.1)) is false. This implies that pre(op(c)) \ s ∈ pre⊥(op(c)), which implies
that ϕ = {p(x) ∈ pre(op) | p(c) ̸∈ s} ∈ pre⊥(op). Furthermore ϕ is not empty
since pre(op(c)) \ s ̸= ∅. By Lemma 6 we have that there is p(x) ∈ pre′(op) such
that p(c) ̸∈ s, which implies that op(c) is not executable in s byM′(C), which
is a contradiction.

Let (s, op(c), s′′) ∈ δ and (s, op(c), s′) ∈ δ′. Suppose by contradiction that
s′ ̸⊆ s′′, which implies that there is a p(c) ∈ s′ which is not in s′′. This can
be caused by some missing positive effect in eff+

! (op) or some extra negative
effect in eff−

! (op). The latter case is excluded by Lemma 4. Suppose that

p(x) ∈ eff ′+(op) but p(x) ̸∈ eff+
! (op). From Lemma 5 we have that eff ′+(op) ⊆

eff+
!?(op). The fact that eff+

! (op) ⊆ eff ′+(op) implies p(x) ∈ eff+
? (op). Since

s is reachable from the final state via M, condition ((5.2)) must be false and
therefore eff+

? (op(c)) ⊆ s. This implies that p(c) ∈ s. Therefore if p(c) ̸∈ s′′,

then it has been deleted by p(x) ∈ eff−
! (op) ⊆ eff ′−(op). But this contradicts

the fact that p(x) ∈ eff ′+(op).

The learned model M approximates the GTM from the final state sf of
OLAM both correctly and integrally. This implies that all and only the valid
plans computed from sf viaM are valid plans from sf via the GTM. Therefore,
if a complete algorithm fails to reach a given set of goals from sf viaM, then
the goals cannot be reached also via the GTM.

62

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

5.5 Experimental Analysis

We evaluate the effectiveness of OLAM for online learning planning domains on
23 planning domains, including the domains from the learning tracks of the
past IPCs and the domains used by [4]. For each domain, using an available
problem generator, we randomly generated 10 small or middle-size instances
with a number of objects ranging from 3 to 241 and consequently a number
of potential grounded actions ranging from 12 to about 3.16 · 106. For every
domain, OLAM is run on all the generated problem instances, from the smallest
to the largest. On the first instance, OLAM takes as input the empty set of
preconditions, positive and negative effects; for the successive runs, OLAM takes
as input the planning domain M learned at the previous run. In OLAM, the
calls Execute and Observe (lines 17-18) are implemented by a simulator of
the IPC domain. The transition function of such a model is not known by the
agent, who can only ask to execute actions and observe the current state. For
function Plan of Algorithm 2 (line 12), we adopt FastDownward [50] with
a 60 seconds timeout. All experiments were run on an Intel Xeon Skylake 2.3
GHz with 8 cores and 64 GB of RAM.

The learned planning domain is compared with the GTM, as done by [4],
by precision and recall measures. Given a learned modelM and GTMM′, we
define precision and recall for preconditions (Ppre, Rpre), positive and negative
effects (Peff− , Peff+ , Reff− , Reff+). Specifically, Ppre and Rpre are defined as
follows:

Ppre =
∑

op |pre(op)∩ pre′(op)|∑
op |pre(op)| Rpre =

∑
op |pre(op)∩ pre′(op)|∑

op |pre′(op)| .

Intuitively, they measure the (relative) amount of extra learned preconditions
w.r.t. the GTM, and the (relative) amount of missing preconditions w.r.t. the
GTM, respectively. The lower these amounts, the greater the measures. Simi-
larly, we define precision and recall for eff− and eff+. If the precision and recall
measures for pre, eff− and eff+ is 1, then the learned model is exactly the same
as in the GTM for pre, eff− and eff+, respectively. The overall precision P and
recall R are defined considering pre, eff−, eff+ together. I.e.,

P =
∑

op |pre(op)∩ pre(op)′|+|eff+(op)∩ eff′+(op)′|+|eff−(op)∩ eff′−(op)′|∑
op |pre(op)|+|eff+(op)|+|eff−(op)| ,

and similarly for R.

5.5.1 Evaluation on IPC domains

Table 5.1 summarizes the efficacy ofM w.r.t. the GTM in terms of precision and

recall. By construction of sets pre(op) and eff
+/−
! (op) of every operator op, Rpre,

Peff+ , and Peff− ofM must be equal to 1, i.e., there is no missing precondition
and extra effect in the learned modelM w.r.t. the GTM. This is confirmed by

63

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

Domain #I Ppre Rpre Peff+ Reff+ Peff− Reff− P R

barman 4 0.95 1 1 1 1 1 0.97 1
blocksworld 1 1 1 1 1 1 1 1 1
depots 1 0.94 1 1 1 1 1 0.97 1
driverlog 2 0.88 1 1 1 1 1 0.93 1
elevators 3 0.81 1 1 1 1 1 0.88 1
ferry 1 0.88 1 1 1 1 1 0.94 1
floortile 1 0.71 1 1 1 1 1 0.83 1
gold-miner 2 0.68 1 1 1 1 1 0.80 1
grid 2 0.71 1 1 1 1 1 0.82 1
gripper 1 1 1 1 1 1 1 1 1
hanoi 1 0.80 1 1 1 1 1 0.88 1
matching-bw 3 0.97 1 1 1 1 1 0.99 1
miconic 1 1 1 1 1 1 1 1 1
n-puzzle 1 0.75 1 1 1 1 1 0.88 1
nomystery 1 0.75 1 1 1 1 1 0.85 1
parking 2 0.78 1 1 1 1 1 0.89 1
rover 5 0.78 1 1 0.65 1 0.54 0.83 0.84
satellite 1 1 1 1 1 1 1 1 1
sokoban 1 0.80 1 1 1 1 1 0.89 1
spanner 1 0.90 1 1 1 1 1 0.94 1
tpp 3 0.94 1 1 1 1 1 0.97 1
transport 1 0.91 1 1 1 1 1 0.95 1
zenotravel 1 1 1 1 1 1 1 1 1

Table 5.1: Number of instances used to learnM (column 2), precision and recall
over the preconditions, positive and negative effects ofM (columns 3–8), overall
precision and recall ofM (columns 9-10).

the results in Table 5.1. Moreover, Ppre is always quite high, although usually
lower than 1, i.e., there are few extra preconditions in the learned model w.r.t.
the GTM. The extra-learned preconditions are static predicates such that, when
the action is grounded, the corresponding grounded preconditions are true in all
the states reachable from the initial state. This prevents the remotion of these
extra preconditions from a correct learned model, like M. The recall over the
positive/negative effects is always equal to 1 for every domain but Rover, i.e.,
there are no missing effects (except for Rover) in the learned model w.r.t. the
GTM.

The results in Table 5.1 also show that domainM can be learned using very
few problems, often using only a single problem. Note that such a domain is
learned by few small problems, and it does not mention their constants, i.e., it
is general and hence suitable even for much larger problems. This shows that
overall OLAM is able to effectively generalize between the experience derived
from small environments and the future experience in large environments.

64

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

with assumption without assumption
Domain Peff− Reff− P R Peff− Reff− P R
barman 1 1 0.97 1 0.24 1 0.56 1
blocksworld 1 1 1 1 0.43 1 0.69 1
depots 1 1 0.97 1 0.56 1 0.80 1
driverlog 1 1 0.93 1 0.23 1 0.53 1
elevators 1 1 0.88 1 0.15 1 0.42 1
ferry 1 1 0.94 1 0.50 1 0.75 1
floortile 1 1 0.83 1 0.10 1 0.29 1
gold-miner 1 0.82 0.80 0.95 0.18 1 0.41 1
grid 1 1 0.82 1 0.28 1 0.55 1
gripper 1 1 1 1 1 1 1 1
hanoi 1 1 0.88 1 1 1 0.88 1
matching-bw 1 1 0.99 1 0.32 1 0.65 1
miconic 1 1 1 1 0.23 1 0.62 1
n-puzzle 1 1 0.88 1 0.50 1 0.70 1
nomystery 1 1 0.85 1 0.10 1 0.30 1
parking 1 1 0.89 1 0.35 1 0.60 1
rover 1 0.54 0.83 0.84 0.16 0.54 0.55 0.84
satellite 1 1 1 1 0.67 1 0.92 1
sokoban 1 1 0.89 1 0.25 1 0.53 1
spanner 1 1 0.94 1 0.40 1 0.70 1
tpp 1 1 0.97 1 0.15 1 0.42 1
transport 1 1 0.95 1 0.33 1 0.65 1
zenotravel 1 1 1 1 0.33 1 0.67 1

Table 5.2: Precision and recall over the negative effects ofM−
? and overall model

M−
? with the assumption eff ′−(op) ⊆ pre′(op) (columns 2–5), and without this

assumption (columns 6–9).

We also study the efficacy of M−
? w.r.t. the GTM. The difference between

the learned modelsM andM−
? consists in the fact thatM−

? also includes set
eff−

? (op) as negative effects of an operator op. Therefore, the precision and the
recall over the preconditions and the positive effects of M−

? are the same as
in Table 5.1. Table 5.2 gives the precision and recall over the negative effects
of M−

? and over all domain M−
? . For this study we consider M−

? with and

without assuming eff ′−(op) ⊆ pre′(op), i.e., when this assumption is made, the
atoms in eff−

? (op) that are not in the preconditions of an operator are removed.
By construction of set eff−

!?, Reff− must be equal to 1. Surprisingly, this is false
for domains Gold-miner and Rover. The reason why this happens is that for
these domains an assumption of ours does not hold: Rover is a special domain

including operators with inconsistent effects, i.e., eff ′+(op) ∩ eff ′−(op) ̸= ∅, for
some operators. For Gold-miner, the assumption eff ′−(op) ⊆ pre′(op) does not
hold. This assumption is violated also in domains Parking, Satellite and

65

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

OLAM Fama

Domain Time P R Time P R ∆ acts
blocksworld 5.03 1 1 510 1 1 -80
driverlog 20.42 0.93 1 349 0.79 0.85 -43
ferry 7.54 0.94 1 267 0.80 0.93 -85
floortile 47.34 0.83 1 517 0.82 0.78 -15
grid 36.92 0.82 1 306 0.81 0.74 -1
gripper 3.50 1 1 165 0.86 0.93 -89
hanoi 2.38 0.88 1 818 0.88 0.86 -96
miconic 4.24 1 1 200 0.81 1 -78
n-puzzle 1.97 0.88 1 23 0.86 1 -91
parking 183.94 0.89 1 895 0.84 0.84 -47
rover 154.10 0.83 0.84 629 0.51 0.53 175
satellite 11.26 1 1 65 0.70 0.89 -54
transport 74.98 0.95 1 280 0.80 0.89 -32

Table 5.3: CPU-seconds, precision and recall of OLAM (columns 2–4) and Fama

(columns 5–7); difference between number of actions executed by Fama and
OLAM (column 8): negative values mean that OLAM executes fewer actions.
Bold values indicate best results.

Matching-bw, but for these domains there is no missing negative effect inM−
? ,

since OLAM on line 21 learns eff−
! regardless of this assumption. Interestingly,

P−
eff with this assumption is always equal to 1, while without the assumption it

is almost always quite low. This gap gives evidence that such an assumption
can be very useful for removing extra negative effects from the learned domain.

We compare OLAM with a version of the algorithm that explores the world
randomly. The random strategy reaches an average precision and recall of 0.45
and 0.63, against the average precision and recall of 0.99 and 0.92 obtained by
OLAM, which shows that the generation of informative plan traces is extremely
helpful.

5.5.2 Comparison with offline learning

In the last experiment we compare the online learning of OLAM with the offline
learning method proposed by Fama [4]. Fama takes as input a set of plans with
their state trajectories. Since OLAM does not support partial observability, we
set Fama for working in a fully observable environment, and considered the same
sets of plan traces and planning domains (but Visitall and Zenotravel) as
in [4]. The set of plan traces consists of 10 traces with 10 states; the set of
planning domains does not contain Zenotravel and Visitall, because the
distributed version of Fama finds no solution for Zenotravel, and there is no
problem generator available for Visitall. Since Fama adopts the assumption

eff ′−(op) ⊆ pre′(op) for any operator op, we compared the planning domain
derived from Fama with M−

? using the same assumption. We obtained similar

66

CHAPTER 5. ONLINE LEARNING OF ACTION MODELS

results from the comparison between Fama and the other learned domainM.
Table 5.3 compares OLAM and Fama. OLAM obtains better or equal precision

and recall, and generally it is also much faster. In all the domains but Rover,
OLAM executes less actions than Fama. We think that the difference for Rover
is related to the consistent-effects assumption made in OLAM that in Rover
does not hold. Overall, learning the planning domain online is much more
effective than learning it offline. In our online approach, indeed, the agent
selects the goals to reach and actions to execute to optimize learning, while in
offline approaches actions are provided in the input traces.

67

Chapter 6

Online Grounding of Action
Models

Symbolic planners are powerful and flexible tools that, given a general symbolic
description of an available set of actions (i.e., a planning domain) and a detailed
description of an environment, are capable of generating plans for achieving ide-
ally any goal about (known) objects in the environment. In several applications,
the information about the environment required to instantiate a planning do-
main is not available from the beginning. In particular, when an agent is placed
in a new environment, it does not know the objects that populate the envi-
ronment, and therefore it does not know their specific properties and relations.
Consider, for instance, a robot that has to move around and manipulate ob-
jects in a kitchen (tables, chairs, apples, etc.) without knowing which and how
many objects are really in the room. In this setting, the exploitation of a plan-
ning domain is a compelling challenge for three main reasons. First, in realistic
environments, it is unfeasible for the robot to acquire a complete/correct and
sufficiently detailed description of the environment before starting to plan and
execute actions towards the achievement of its goals. Second, a robotic agent
usually has a first-person perspective and partial view of the environment (e.g.,
by an on-board camera), hence the only way to acquire symbolic knowledge
suitable for planning is by executing actions, observing their effects through its
sensors, and mapping the sensory data (e.g., raw images) in a symbolic state.
Third, high-level actions of the planning domain are not directly executable by
the robot, and therefore they need to be compiled to low-level actions executable
by the robot’s actuators. For instance, given an object instance identified by
a constant c0, the action goCloseTo(c0) is compiled into a sequence of robot
movements and rotations, which follows the path provided by a path-planner,
and moves the robot to the (nearest) location close to object c0.

In the agent-environment interface (Figure 6.1), Ogamus focuses on the
perception function, since, though not being learned, an incorrect perception
function is used for mapping the agent’s perception into a symbolic state suitable

68

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 6.1: Ogamus within the agent environment interface.

for applying symbolic planning. The planner module is used for computing a
symbolic plan that leads the agent toward the achievement of a given goal, and
the executor module is considered since the agent has to execute the symbolic
actions in the plan through its actuators. In Ogamus, less importance is given
to the environment model, since a symbolic planning domain is required as
input.

6.1 The Ogamus Framework

We propose a framework for agents that incrementally instantiate a planning
domain, specified in PDDL, by planning, acting, and sensing, in an unknown
environment. At each time point, the belief of the agent about the current state
of the environment is represented by three components, namely: (i) the set of
objects currently known by the agent and their properties expressed with the
predicates of the PDDL domain, e.g., table(c0), apple(c1), and on(c1, c0); (ii) for
each known object, a set of low-level features as perceived by the agent, e.g.,
visual features and positions of c0 and c1; (iii) a set of global features associated
with the current environment state, e.g., an occupancy map of the environment,
and the current pose of the robot.

For this framework, we propose an online iterative algorithm, calledOgamus
(Online Grounding of Action Models in Unknown Situations), which allows
an agent, equipped with a lifted PDDL planning domain, and placed in an
unknown environment, to achieve a set of goals expressed in the language of its
PDDL action model. The agent is initialized without prior knowledge about
the environment where it has to operate, i.e., with the empty set of objects,
the empty set of their properties, and all the points of the occupancy map
set as traversable. Ogamus attempts to achieve the goal by combining four
main activities, namely: (i) exploring the environment to acquire the knowledge
needed to achieve the goals; (ii) abstracting the sensor information obtained
at every step into a symbolic state; (iii) performing symbolic planning in the
abstract model grounded with the current beliefs and current abstract state;
(iv) executing the planned abstract actions by compiling them into low-level
operations suitable for the current state of the environment.

The main features of Ogamus are the following. Generality: Ogamus is
able to deal with any goal that can be expressed by a (first-order) formula using
the predicates of the PDDL domain. For instance the goal of putting “two

69

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

apples on a table” can be specified by the formula ∃x y z.on(x, z) ∧ on(y, z) ∧
apple(x) ∧ apple(y) ∧ table(z) ∧ x ̸= y. Notice that goals are expressed with
existentially quantified variables; this is because, initially, the agent is not aware
of any object in the domain. An important step, necessary to achieve a goal
containing existential variables, concerns discovering the object instances of the
proper types (apple and table in the previous example) for instantiating all the
existential variables. Explainability : The behaviour of the agent, its plans, and
the effects of actions are represented at a symbolic level in which the states of
the PDDL domain are derived at every step by abstracting the sensory data.
Robustness: The action model, the obtained symbolic state representation, and
the action compilation are not required to be fault free. As experimentally shown
in this paper, Ogamus achieves a high success rate even with low-precision
object detectors and classifiers.

In order to use an abstract model, an agent needs to anchor the symbols oc-
curring in the states of the planning domain with real-world perceptions, and to
map abstract actions into actions executable in the real world [21]. We suppose
that the agent can partially observe the current state of the environment through
a set of sensors, for instance images provided by an RGB-D camera, which do
not directly correspond to the states of the abstract model. Furthermore, the
set of sensors provides only a partial and subjective view of the environment.
For instance, the RGB-D camera provides only an egocentric view of a portion
of the room visible by the agent. We also suppose that the agent interacts with
the environment by executing low-level operations (e.g., move 25 cm forward,
rotate 30◦ left, pick up or put down an object at the GPS-coordinates (x, y, z)),
which are different from the actions in the abstract action model. We need
therefore to link the abstract state to real perceptions, and the abstract actions
to operations executable by the actuators of the agent. Let us first consider the
relationship between abstract states and perceptions.

Object and state anchoring. Every object that the agent is aware of at a
given instant is represented by a constant c ∈ C that is the internal iden-
tifier for such an object. Following the approaches to symbol anchoring
proposed in the literature [21, 88], every constant c ∈ C is associated with
a tuple of numeric features denoted by zc. For instance, zc might include
the estimated position of c and a set of visual features of the different
views of c. In addition, for each state s determined by the agent, we have
a vector of state features zs, consisting of the 3D position of the agent in
the environment, the orientation of the agent relative to its initial pose,
the information about the success of the last low-level operation made by
the agent, and an occupancy map of the environment. The occupancy
map is a 2D map of the environment storing the areas that are believed
to be traversable by the robot. The occupancy map is initialized so that
every point is traversable.

Predicate predictors. In order to map the perceptions about objects into
atoms of the symbolic state, the agent associates to every predicate a

70

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

probabilistic model, e.g., a neural network, that computes the probability
of a certain atom P (c) to be true given the features associated to c and the
current state ones, i.e., Pr(YP (c) = True | zc, zs), where YP (c) is a boolean
random variable associated to the atom P (c). These probabilistic models
can be updated during execution on the basis of new observations. In this
paper, however, we suppose that these probabilistic models are given (e.g.,
a pre-trained neural network), and they are not modified during execution.

We call belief state the agent’s knowledge about object/state anchoring and
predicate predictors.

Definition 14. An agent belief state is a 5-tuple ⟨C, zC , s,zs,Pr⟩ where:

– C is a set of constants;

– zC = {zc}c∈C is a set of object feature vectors zc;

– s ⊆ P(C) is the set of atoms that are believed to be true;

– zs is a vector of state features;

– Pr = {Pr(YP (c) | zc, zs)}P∈P is the set of probabilistic models used to
predict the truth value of P (c) given the features zs and zc associated
with the constants in c.

6.2 The Ogamus Algorithm

So far, we have not considered how the set C of constants identifying objects
is obtained by the agent. We do not assume that they are given a priori to
the agent; instead, we are interested in providing the agent with the capability
to discover objects by adding new constants to the representation of the envi-
ronment, updating the anchor to an object, merging two constants anchored
to the same object, and deleting a constant from the representation that was
erroneously identifying a non-existing object in the environment.

Let x be the vector that contains the data returned by the sensors (i.e., the
observations) at a given time; the agent extracts from x a set of objects Cx, and
for each object c ∈ Cx a feature vector zc. Since the agent can also recognize
objects that it has already seen, it is possible that Cx ∩ C ̸= ∅.

71

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Algorithm 3 Ogamus algorithm

Input: M, G, Pr and MaxIter ∈ N.
Output: Success/Fail

1: ⟨C, zC , s,zs⟩ ← ⟨∅, ∅, ∅, (0, nil, ∅)⟩
2: for 1 = 0 to MaxIter do
3: if s |= G then
4: return Success
5: end if
6: π ← Plan(M, C, s,G)
7: if π = None then
8: e← explore(zs)
9: else

10: op(c)← Pop(π)
11: e← compile(op(c), zc, zs)
12: end if
13: e1 ←Pop(e)
14: x← Exec(e1)
15: zs ← getStateFeatures(x)
16: Cx, zCx ← GetObjs(x)
17: C, zC ← updateObjs(C, zC , Cx, zCx)
18: Pr(YP(C))← PredictState(zC , s,zs)
19: s← {p(c) ∈ P(C) | Pr(Yp(c) = True | zc) >1−ϵ}
20: if π ̸= None and succeed(op(c)) then
21: s← s ∪ eff+(op(c)) \ eff−(op(c)))
22: end if
23: end for
24: return Fail

In the following, we shortly describe the Ogamus algorithm (Algorithm 3).

– The algorithm takes as input an action model M, a set Pr of proba-
bilistic models for predicting the predicates in P, a goal formula G, and
a maximum number of iterations. Notice that the goal G cannot con-
tain constants, since we suppose that at the beginning the agent is not
aware of any object. For instance, the goal requiring that an apple is in-
side a box can be encoded by the PDDL expression representing formula
∃x, y apple(x) ∧ box(y) ∧ in(x, y).

– The agent starts by initializing all the components of its state to the empty
set (line 1). We assume indeed that the agent is not aware of any object
in the environment, therefore C = ∅. Since C is empty, zC , P(C) and
s are also empty. The information in zs representing the position and
orientation of the agent is initialized with a vector of 0’s; the information
in zs about the success of the last operation is set to nil; finally, the
occupancy map of the environment in zs is set to an empty map so that
all the points are traversable.

72

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Agent position
{x = 0.9, y = 0.4}
Target position
{x = 0.2, y = 0.2}

Positions
Occupancy map

Path planner

Path plan
moveAhead

moveAhead

moveAhead

rotateLeft

rotateLeft

...

Low-level operations

Figure 6.2: Example of explore(zs). The occupancy map, agent position (in
blue), and target position (in green) are given as input to a path planner which
discretizes the occupancy map, computes a path plan, and compiles the path
plan into a sequence of low-level operations.

– Then the agent iterates for a maximum number of steps, checking if the
current state s satisfies the goal (line 4); when this is the case, it returns
Success.

– Otherwise, the agent invokes a planner (line 6) to solve the planning prob-
lem defined on the input action model, the current set of objects, the
current state, and the input goal formula G.

– If the planner does not find a plan that satisfies the goal, then the agent
explores the environment in order to discover new objects that are needed
to satisfy the goal. For instance, if the goal is to put an apple into a box,
then the planner can find a plan only if in the current state s there is at
least one object of type apple and one of type box. For the exploration
phase (line 8), the agent randomly selects a target position on the occu-
pancy map (stored in zs) that it believes to be free from other obstacles.
As shown in Figure 6.2, explore(zs) calls a path planner that checks if
such a position is reachable (if it is not reachable a new position is selected)
and returns a sequence e of low-level navigation and rotation operations,
which, according to the current knowledge of the agent, moves the agent
from its current position to the selected target. For efficiency reasons,
this path is computed in an approximated occupancy map obtained by
discretizing the occupancy map through a grid. The execution of such
a sequence of operations might fail due to the partial or incorrect knowl-
edge of the agent, i.e., when the agent wrongly believes that a certain area
on the path returned by the path-planner is traversable while there is an
obstacle. In Figure 6.2, the agent fails to reach the red cell. Indeed, the
execution of the third moveAhead action fails because the robot bumps
into a table, whose size was only partially determined at the beginning
of the exploration phase. The exploration terminates whenever the goal
is reachable according to the learned problem. For example, consider the

73

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

RGB view
Object detector

Detected objects

Image crop

box0 image

Depth view

Position
estimator

< −0.2, 1.2,−0.4 >

box0 position

bboxes

Figure 6.3: Example of object features extraction. The object detector takes
as input the perception composed by the agent view RGB image, and returns
a set of bounding boxes together with the detected object types. The object
bounding boxes are used with the agent view depth image to estimate their
positions (in meters w.r.t. the initial agent position). The lighter the pixels in
the box, the farther the associated object.

goal requiring that an apple is in a box and assume that an apple has al-
ready been discovered in the environment. The execution of the computed
sequence of operations terminates in advance, when the agent detects the
presence of a box on the table in Figure 6.2, as it approaches the table by
executing the first operations in the sequence.

– If instead the planner succeeds and returns a valid plan π, then the first
action of π is compiled into a sequence of low-level operations e (line 11).
The compilation of the action is based on the object and state features
available in the agent’s state. For instance, the high-level action pickup(c)
is compiled into the low-level operation pickup(x, y, z) where (x, y, z) is
the current (believed) position of object c, memorized in zc. The simu-
lator executes such an operation by picking up what is present at these
coordinates. To compile the action goCloseTo(c) instead, the agent calls a
path planner that provides a path from the current position of the agent
(memorized in zs) to a position close to c.

– Successively, the first operation of sequence e is executed (line 14), and a
new observation x is obtained. The execution of the first operation may
fail or not. In both cases, the agent can acquire new knowledge (e.g.,
discover new objects or an obstacle), which can be used to produce a
better compilation of a high-level action, and/or produce a better plan.
Then, the new state features zs are extracted from the sensory data x
(line 15). The information about the occupancy map is updated using the
information of success/failure of the action and the depth image.

– Then the agent runs an object detector (line 16) on the RGB image con-
tained in the observation x, which returns a set of objects Cx, each asso-
ciated with a vector of numeric features zc. These features include the

74

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

box0 image open predictor

“yes”

isOpen(box0) ?

Figure 6.4: Example of predictor for the open predicate. The predictor takes
as input the RGB images associated to box0, and returns the predicted truth
value of isOpen(box0).

bounding box, an estimation of the object position, and a vector of visual
features extracted from the cropping of the image with the bounding box.
Figure 6.3 gives an example of extraction of a number of objects, includ-
ing a box, from the egocentric view of an agent robot, together with the
bounding-box image of such a box and the estimate of its position.

– Next, at line 17, the agent merges the objects Cx recognized in the current
perception with the ones already known, i.e., C. For every object c′ ∈ Cx
there are two possible situations: (i) c′ does not match with any object
c ∈ C, and therefore it is added to C with the corresponding features zc′ ;
(ii) c′ matches with a c ∈ C; in this case the features zc of c are extend-
ed/updated with the features zc′ . In the implementation, we use a very
simple matching criterion which considers only the estimated position of
the objects. Two objects are matched when their distance is less than a
given threshold (set to 20cm). More sophisticated criteria can be adopted
by defining a suitable distance measure between the entire set of object
features. However, this simple criterion turned out to be sufficiently effec-
tive in our experiments.

– In line 18, the agent predicts the truth values of each atom in P(C) for the
updated set of constants C by applying the predictors Pr on the features
zC . For predicate closeToAgent, the prediction takes also as input the
agent position in zs. All the atoms involving new or merged objects must
be evaluated; the remaining atoms are evaluated only if the corresponding
predictor takes as input some feature that has been updated after the exe-
cution of the last action. For instance, if the agent executes a move action,
then all the atoms closeToAgent(c) for all c ∈ C must be evaluated. Each
atom closeToAgent(c) is predicted true if the euclidean distance between
the position of the object represented by c in zc and the agent position
in zs is lower than a given threshold (set to 140 cm). When the action
open(box0) is executed, the visual features of box0 probably change, and
the truth value of predicate isOpen(box0) is predicted as depicted in Figure
6.4. Notice that, after executing an open operation it is not guaranteed
that the object will be open, as the action might fail.

– At line 19, the new state s is created with all predicates P (c) such that

75

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Pr(YP (c) = True | zc, zs) is higher than a given threshold 1 − ϵ with ϵ ∈
[0, 1]. Our approach does not assume to have access to the correct abstract
state. Indeed, the agent can produce inconsistent states (e.g., a box is both
on the table and on another box), or states that do not comply with action
effects. Inconsistent states do not prevent Ogamus to further planning
and, whether a failure occurs, revise the agent’s knowledge making them
consistent. In the second case, the agent monitors the execution of high-
level actions by comparing the state predicted by the PDDL model with
the perceived state, and it solves inconsistencies in favor of the action
effects in the model.

– At line 21, when succeed(op(c)) is true, i.e., the entire sequence e of
operations compiling the first action op(c) of π is successfully executed,
the state s is updated according to the effects of op(c).

– If the agent does not reach a state s that satisfies the goal G afterMaxIter
steps, then the algorithm returns Fail (line 24).

Knowledge Revision for New Tasks To show the generality and the mod-
ularity of the proposed framework, we describe how it can be easily extended
to cope with new tasks that can possibly involve a set of new (PDDL) actions,
predicates, and object types. To allow the agent to accomplish a new task tnew,
we firstly need to encode tnew in a PDDL goal formula. If the encoding of tnew
does not require the introduction of new predicates, actions, or object types,
then to solve the task it is sufficient to invoke Ogamus with the goal formula
encoding tnew. If, instead, the encoding of tnew requires some new predicates,
actions, or object types, then we have to provide the agent with the capability
of (1) recognizing objects of the new types, (2) predicting the truth value of
the new predicates, and (3) compiling the new actions in low-level operations
executable by the agent’s actuators. Consider, for instance, the case where
tnew is the task turning a lamp on: tnew can be specified by the goal formula
∃x.lamp(x)∧ turned on(x), where lamp is a new object type and turned on a new
unary predicate.

To detect objects with the newly introduced type e.g., lamp, the object
detector need to be extended and retrained with the new object type. This
implies that the upper part of the detector (which is responsible for classifying
the objects in their types) need to be extended with the new type and re-trained
on a dataset containing also examples for this new type. The introduction of
a new predicate, in our example turned on, requires the deployment of a new
classifier that predicts if the predicate holds for the objects detected from the
sensory data. In case the predictor is based on a supervised learning model, then
a training dataset with objects labeled with positive and negative examples of
the predicate need to be provided. Finally, if the new task requires adding new
actions to the PDDL model, (e.g., to make the predicate turned on(x) true/false
we need to introduce two new action turn on and turn off) we need to specify
how the new action can be compiled into a sequence of low-level operations

76

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

executable by the agent. For example, action turn on(c) will be compiled into a
low-level operation turn on(x, y, z) where (x, y, z) is the believed position of the
object c.

6.3 Experimental Analysis

We perform two sets of experiments. First, we experimentally evaluateOgamus
with a simulated environment on four tasks that involves going close and moving
objects present in a number of rooms. Then, we compare Ogamus with a state-
of-the-art approach on the specific task of object goal navigation in different
apartments.

6.3.1 Evaluating Ogamus

The tasks and the corresponding goals on which we evaluate Ogamus are the
following:

1. Object goal navigation (objNav t1): given an object type t1, the agent
has to find, go close to, and look at an object of type t1. For instance, the
agent has to go close to an apple and look at it. The corresponding goal
is ∃x(Apple(x) ∧ CloseToAgent(x) ∧ Visible(x)). The agent is close to an
object when the distance from the object is less than 1.5 meters.

2. Open/close an object (Open/Close t1): the agent is required to go close
to an object of type t1, look at it, and open/close it. For instance, the agent
has to open a drawer; the corresponding goal is ∃x(Drawer(x)∧Open(x)).
In order to manipulate an object the agent need to be at a distance less
than 1.5 meters.

3. Stack an object of type t1 on an object of type t2 (On t1 t2): the agent
has to find two objects of types t1 and t2 and put the one of type t1 on
top of the other of type t2. For instance, the agent has to put an apple on
a table. The corresponding goal is: ∃xy(Apple(x) ∧ Table(y) ∧ On(x, y)).

Since these tasks do not involve numerical resources or temporal constraints, we
adopted propositional PDDL planning.

Simulator. We used the iThor [64] simulator, an open-source interactive
environment for Embodied AI. iThor provides 120 different scenes, such as
kitchens, living rooms, bathrooms, and bedrooms, and allows a realistic sim-
ulation of the environment, including the physics of the objects. The scenes
contain objects of 118 different types. The agent perceives the current state of
the environment through an RGB-D on-board camera that provides a photo-
realistic rendering of its egocentric view. The agent also perceives its position
and orientation via a GPS and a compass (relative to the initial pose, which
is unknown). The agent can navigate the environment by moving ahead of a

77

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

given distance (set to 25cm), turning left or right, and looking up or down by
a given angle (set to 30◦).1 The agent can pick up objects, move them around,
and change their state (e.g., a fridge can be opened or a laptop switched on).

For the object goal navigation task, we also considered a second simula-
tor, RoboThor [27]. RoboThor is another simulation environment designed
to develop embodied AI agents. Recently, RoboThor hosted a competition
that tackles an object goal navigation challenge; in our experiments, we also
compared Ogamus with the approaches that took part in the competition.

Object detector. As an object detector, we used the Faster-RCNN model
available in PyTorch 1.9 [87], pre-trained on the COCO dataset [76] and fine-
tuned on a self-generated dataset. In addition to the bounding box of the
detected object, the object detector returns also the classification in one of the
118 classes. The object detector has been trained on a dataset composed by
69,095 training and validation images. The labeling of the dataset has been
done by using the ground truth provided by iThor. We tested it on 12,892
images obtaining a precision and recall of 50.99% and 65.18%, respectively.

Predicate predictors. For predicting predicateOn, we trained a feed-forward
neural network [111] with 244 input features composed by the bounding boxes
coordinates of the two objects involved in the predicate relation and the 1-hot
encoding of the two predicted classes returned by the object detector. For such
a predicate, the training (and validation) sets is composed of 36,344 labeled
pairs of objects. We evaluate the prediction of predicate On on a test set com-
posed of 8678 object pairs, obtaining 98.32% of both precision and recall. For
predicting the unary predicate Open, we used a ResNet50 neural network [49]
to extract features from the cropped object image, followed by a linear layer
with input size 2048.2 We trained it on 48,476 labeled examples, and test it
on 9685 examples, obtaining 92.84% precision and 92.54% recall. The unary
predicate closeToAgent, meaning that the agent is near to the object men-
tioned by the predicate, is computed directly from the features of the object.
Specifically, we check if the distance between the agent position memorized in
zs and the object position memorized in the object feature vector is less than
the manipulation distance, which is set to 1.5 meter in iThor and 1 meter in
RoboThor. Finally, we have to predict the equality predicate, i.e., when two
objects c and d with features zc and zd represent the same object. For this
purpose, we compute the distance between the two estimated object positions,
and assign the object features to the same object instance whether such a dis-
tance is lower than a given threshold (set to 20 cm in our experiments). All the
training, validation, and testing data have been extracted from a set of images
collected by navigating in the iThor simulator.

1These settings are those indicated by the simulator developers for their proposed chal-
lenges.

2Further technical details about the hyper-parameters and datasets are available in the
supplementary material.

78

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Success ↑ DTS ↓ PC ↑ RC ↑ PP ↑ RP ↑
C CGT C CGT C CGT C CGT C CGT C CGT

On 0.5 0.8 1 0.37 0.28 1 0.86 1 0.83 0.82 0.8 0.87
Open 0.75 0.87 0.45 0.25 0.35 1 0.78 1 0.82 0.81 0.72 0.82
Close 0.78 0.89 0.39 0.16 0.32 1 0.8 1 0.8 0.79 0.73 0.82
objNav 0.78 0.83 0.27 0.19 0.42 1 0.8 1 0.82 0.8 0.75 0.84

Table 6.1: Performance of Ogamus with/out the ground-truth object detec-
tion, evaluated on the considered tasks in the iThor simulator. ↑/↓ means the
higher/lower the better.

Evaluation metrics. The evaluation is provided by calculating a number of
standard metrics over a set of episodes. For each task, an episode is obtained
by randomly placing the agent in a random unseen scene and providing it with
a randomly generated goal for the given task. The generated goals are feasible
since the object types used in their definitions are randomly chosen from a
proper set of types; e.g., the goal to open a box is defined by randomly choosing
the type “box” from the set of object types that can be opened. For all the
tasks we adopt the following standard evaluation metrics:

Success rate (Success): is equal to the fraction of successful episodes on the
total number of episodes.

Distance To Success (DTS): For tasks (ObjNav t1), (Open t1), and (Close
t1), it is the average distance between the agent and the closest object of
type t1; for the task (On t1 t2), it is the average distance between the
closest pair of objects of types t1 and t2. If the episode succeeds such a
distance is set to 0.

In order to measure the impact of errors in object detections, for each task
we consider two versions of Ogamus. In the first version, the set of objects
C is those returned by our object detector; in the second version, the set of
objects CGT is those returned by the iThor simulator, which corresponds to a
ground truth object detector. Moreover, for all tasks, we evaluate the precision
PC and recall RC of the detected objects, and the precision PP and recall RP
of their predicate relations. PP and RP take into account only the objects
that match with ground-truth ones. The matching is performed by computing
the Intersection over Union (IoU) among the 2D bounding box detected during
the episode and the ground-truth ones: if the IoU is higher than 50% for a
ground-truth object of the same class, then the detected object matches with
it.

Experimental results. In our experiments, a run of Ogamus consists of
200 steps, where at each step a low-level operation is performed; we call each
of these runs an episode. For all tasks, the episode dataset uses the test scenes
of iThor, i.e., all environments that does not appear in the datasets generated
for training the predicate classifiers and object detector.

79

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

In Table 6.1, we report the average results of all tasks with and without
ground-truth object detection over the considered episodes. For task on, we
randomly generated 400 different goals, defining 400 episodes; for tasks open
and close, we randomly generated 100 goals, defining 100 episodes for each
task; for the object goal navigation task, we used the test set of goals proposed
in [119], defining 2133 episodes. It is worth noting that, for the object goal
navigation task, two different episodes often have the same goal but a different
initial pose of the agent.

The impact of errors in object detecting for tasks objNav, open and close
is pretty low and, as expected, it is half of the impact for task on, since this
latter task requires to detect two objects, while all other tasks require to detect
a single object. Without ground-truth object detection, Ogamus achieves the
best success rate on the object goal navigation task; same or similar results are
also provided in tasks open and close, since they can be seen as an extension of
the object goal navigation task where, after finding and going near to an object,
the agent has only to open or close the object. In the on task, the success
rate decreases significantly, because it requires moving towards two objects,
instead of only one, and has two additional complexities given by the facts
that one object must be placed on the other one in a clear place, i.e., a place
not obstructed by other objects, and that the total encumbrance of the agent
increases when it carries an object, which causes more collisions during the
navigation.

Metric PC measures the amount of false positive object detections. Although
the value of PC is quite low for almost all the tasks, the success rate is relatively
high because: (i) many false positive objects are not involved in the definition
of the goals; (ii) the agent acts by using the objects with the highest confidence,
which usually correspond to ground truth objects. PC is higher for the object
goal navigation task, because in this task the agent achieves the goal in fewer
steps than for other tasks, and this reduces the number of predictions and the
chance of detecting false positive objects.

Metric RC measures the amount of true positive detected objects. The values
for RC are quite high, and hence the real existing objects are often detected,
although in our experiments the agent sometimes fails to recognize objects when
they are far from the agent. Moreover, the values of PP and RP are relatively
high, and hence the agent can construct a symbolic state that is quite correct
and complete, enabling effective planning.

As expected, when Ogamus is provided with ground-truth object detection,
all metrics are better than or similar to using our object detection. Only PP is
slightly lower when ground-truth object detection is used; we think this is due
to the fact that sometimes the ground-truth object detection identifies objects
which are only partially seen by the agent camera and predicting their properties
more likely fails (e.g., the agent fails in predicting whether a fridge is open when
it sees only a corner of the fridge).

80

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Success ↑ SPL ↑
Random 1.72% 1.33%
DD-PPO 35.11% 17.37%
DD-PPOboost 36.61% 17.49%
Ogamus 56.78% 24.87%

Table 6.2: Performance of Ogamus w.r.t. the random baseline, DD-PPO, and
DD-PPOboost, evaluated on the object goal navigation task in the RoboThor
simulator.

6.3.2 Comparison on Object Goal Navigation

We did not find other approaches using simulator iThor that solve the tasks
considered in our experiments. Therefore, in our experimental analysis we con-
sidered a second simulator, RoboThor [27], for which the last challenge con-
cerning the object goal navigation was launched in 2021.

For the object goal navigation task, we compared Ogamus with a random
baseline, an RL baseline provided in the challenge, called DD-PPO, and the
winner of the challenge, called DD-PPOboost. Both the RL baseline and the
winner exploit the DD-PPO algorithm [118] where the hidden state is computed
by providing, as input to a GRU [20], the visual features of the RGB-D images
computed by a ResNet-18 [49]. The baseline and the winner approach have been
trained on 108,000 episodes for 300 and about 10 million steps, respectively.

For this experiment, we adopt an additional metric, called Success weighted
by Path Length (SPL), and introduced in [5]. This metric measures the efficiency
of the agent in reaching the goals and is defined as:

SPL =
1

N
·

N∑
i=1

(
si ·

p⋆i
max(pi, p⋆i)

)
where N is the number of episodes, p⋆i is the shortest-path distance from the
initial position of the agent to the closest goal in the i-th episode, pi is the
length of the agent path in the i-th episode, and si is a boolean variable equal
to 1 when the i-th episode succeeds, and equal to 0 otherwise. If the path of
the agent is the shortest one, the term in parenthesis is 1. The longer the path,
the lower the term in parenthesis and the worse the metric.

For the experiment, we considered the validation episode dataset provided
in the challenge, which is composed of 1800 episodes set in the 15 validation
scenes of RoboThor. We did not consider the test episode dataset of the
challenge, because for such a dataset the evaluation can be done only by the
organizers of the challenge who require that the evaluated approach plays by
the challenge rule. This is not the case for Ogamus because it allows the
agent to perceive its pose, which is not available in the challenge. While the
usage of this additional information can in principle favors Ogamus w.r.t. the
approaches that took part in the challenge, it is worth noting that the agent po-
sition can be approximately derived from the RGB-D egocentric views by means

81

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Figure 6.5: Ratio of the occurrences of different error types made by Ogamus.

of visual simultaneous localization and mapping methods [112]. Most impor-
tantly, the usage of the validation dataset of RoboThor disfavors Ogamus
w.r.t. the other compared approaches because the object detector and predicate
classifiers of Ogamus are trained using the training and validation scenes of a
different simulation environment, iThor, while the other compared approaches
are trained and validated on the training and validation scenes of RoboThor.

Each episode of the dataset consists of 500 steps, and regards finding and
moving toward objects of 12 types. We trained an object detector similarly
to the one for iThor simulator, but focused on the 12 goal object types of
RoboThor, which provides a performance slightly higher than the object de-
tector trained using all the 118 object types of iThor, obtaining 59.02% preci-
sion and 69.06% recall.

Table 6.2 shows the results of the comparison. The random baseline provides
poor performance. This indicates that, for the RoboThor simulator, the object
goal navigation task is quite challenging. The complexity of the task is confirmed
by the performance of the RL baseline which is higher than the random baseline
but still quite low. DD-PPOboost provides results slightly higher than the RL
baseline. Remarkably, Ogamus outperforms DD-PPOboost in terms of success
rate and SPL. This confirms that the integration of symbolic planning with
state recognition from sensory data can provide competitive results w.r.t. RL
approaches.

82

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

Figure 6.6: Average performance of Ogamus for the goal object navigation task
in the RoboThorsimulator, using a number of steps ranging from 0 to 500.

6.3.3 Error Analysis

In Figure 6.5, we analyze the errors made by Ogamus on all tasks. For few
episodes, denoted as “Not inspected”, the agent detects a far object of the same
type as the type used for the goal definition, and subsequently approaches the
object but is no more able to recognize it. This is due to the fact that either
the object does not really exist, or the agent does not recognize an existing
object, despite being close to and looking at it. For some episodes, namely
“Not reachable”, the agent finds a goal object but cannot reach a position close
enough to the object. This can be due to the fact that either the agent collides
or the goal object’s estimated position is farther than the real one. Collisions
more often happen for the task on, when the agent holds an object as the agent
encumbrance increases. An error in the estimation of the object position is more
likely for large objects, such as tables or televisions, since the agent considers
the center of the object as its position. There are few episodes, labeled as “Not
found”, where the agent does not find the object, due to either an ineffective
exploration of the environment or false negatives of the object detector. We
observed that the latter case is more likely than the former, because the agent
almost always explores the entire environment within the given number of steps.
The errors labeled as “Confused” denote episodes for which the agent believes it
succeeded while the task has not been completed. This is due to false positives of
the object detector. Finally, “Others” denote all other task-dependent failures.
E.g., for the on, open, and close tasks, the agent sometimes fails to identify
the object position when it has to manipulate an object. This more likely
happens for small objects, such as spoons or saltshakers. Moreover, for the on

83

CHAPTER 6. ONLINE GROUNDING OF ACTION MODELS

predicate an agent can fail to put an object on a table due to the fact that the
target position is already occupied, or there is not enough space on the table.

Figure 6.6 shows the success rate and SPL for a number of steps ranging from
0 to 500. For almost all episodes the agent achieves the goal in 300 steps. For
a few episodes, the agent achieves the goal only after 500 steps. This happens
because the agent is actually close to and looks at a goal object, but it fails to
recognize the object.

84

Chapter 7

Planning for Learning
Object Properties

Agents embedded in a physical environment, like autonomous robots, need the
ability to perceive objects in the environment and recognize their properties.
For instance, a robot operating in an indoor environment should be able to
recognize whether a certain box found in the environment is open or closed, a
cup is full (of coffee) or empty, the TV is on or off, and so on. From these
perceptions, the agent can build and use abstract representations of the states
of the environment to reach its goals through automatic planning techniques.
The common approach to provide an agent with such perceptual capabilities
consists in pre-training offline a (set of) perception models from hundreds of
thousands of semantically annotated data (e.g., images or other sensory data).
See for instance [6, 53, 28].

In offline training approaches, the perception capabilities are fixed once and
for all. This is in stark contrast with a main requirement in many robotics ap-
plications: agents embedded in real-world, open-ended environments should be
able to dynamically and autonomously improve their perceptual abilities by ac-
tively exploring their environments. This is also in agreement with the emerging
popular research area of interactive perception [11]. When perception functions
are modeled by (deep) neural networks, an open and interesting challenge is
whether agents can autonomously decide when and how to improve their per-
ception models, by collecting the needed training data and using them to train
the neural network.

We explore a way to address this challenge with an automated planning
approach. In particular, we design a PDDL planning domain for planning to
learn (or improve) the perceptual capabilities of the agent. We focus on the
problem of automatically training neural networks able to recognize properties
of objects, e.g. open/closed, by relying on a pre-trained object detector. We
extend a PDDL planning domain, called base domain, with new actions and
predicates for learning properties of object types. Such an extension, called

85

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 7.1: OLOP within the agent environment interface.

learning domain, is specified in a meta-language of the base language. It contains
the reification of properties and types of the base language. For instance, if
Is Open is a property of the base domain, the learning domain contains the
object ‘is open’ of type Property. Furthermore, the learning domain contains
actions for collecting training examples for properties, and actions for training
the network with them.

The online learning of object properties is obtained by planning in the union
of the base and learning domains, and by executing the generated plan. The base
domain allows the agent to plan to reach a state where the agent can observe
an object with a certain property, e.g., a state where Is Open(box0) is true. The
learning domain allows the agent to plan for actions that collect observations of
objects with the property being true, e.g., take pictures of box0, which is known
to be open, and add them to the positive training examples for the property
Is Open. In this way, the agent automatically maps low-level perceptions (e.g.,
images of an open box) into the symbolic property of objects at the abstract
planning level (e.g., “the box is open” in PDDL).

OLOP, in our agent-environment interface (Figure 7.1), learns the perception
function, since it plans for collecting data that are used to train object property
predictors. Similarly to Ogamus, the environment model is not learned since
a symbolic planning domain is given as input. OLOPheavily relies on the plan-
ner, since it plans for learning object properties, and exploits the executor for
executing symbolic actions through its actuators.

7.1 Preliminaries and Problem Definition

Perception functions The agent perceives the environment by sensors that
return real-value measurements on some portion of the environment. For ex-
ample, the perceptions of an agent with an onboard camera and a system for
estimating its position is a vector (x, y, z) of coordinates and an RGB-D im-
age i taken by the agent’s on-board camera. Observations are partial (e.g., the
camera provides only the front view) and could be incorrect (e.g, the estimation
of the position could be noisy). We suppose that, at the time when a percep-
tion occurs, the agent’s knowledge about the environment is represented by a
grounded planning domainM(C), where C represents the set of objects already
discovered in the environment. Each c ∈ C is associated with an anchor [21]
that describes the perceptual features of c that have been collected by the agent

86

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

so far (e.g., the pictures of c from different angles, the estimated position, and
size of c, etc.). At the beginning, the set C of constants is empty. The agent per-
forms and processes each perception in order to extract some knowledge about
the objects in the environment, and about their properties in the current state.
This is achieved by combining an object detector and a set of property classifiers.

The object detector identifies a set of objects in the current perception (e.g.,
RGB-D image) and predicts their types (i.e., it selects one type among the
object types of the planning domain). Every detected object is associated with
numeric features (e.g. the bounding box, the estimation of the position, etc.),
which are used to build the anchors of the detected object. The features of each
detected object are compared with the features of the objects already known by
the agent, i.e., those present in the current set of constants C. If the features
of the detected object match (to a certain degree) the features of a c ∈ C, then
the features of c are updated with the new discovered features. Otherwise, C is
extended with a new constant c anchored to the features of the detected object,
and the type t(c) is asserted in the planning domain, where t is the type returned
by the object detector.

For every object c of type t returned by the object detector and for every
property p that applies to t, a classifier ρt,p predicts if c has/has not the property
p. Notice that, not all properties apply to a type, e.g., it does not make sense
to check if a laptop is filled or empty. Furthermore, for the same property we
use different classifiers for different types, since predicting that a bottle is open
or that a book is open from visual features are two very different tasks. ρt,p
can be specified either explicitly by a set of predefined rules, or it can be a
machine learning model trainable by supervised examples. For instance, the
classifier that checks if an object is Close To the agent is defined by a threshold
on the distance between the agent and the object position. Other properties
(e.g. Is Open) are predicted using a neural network, which takes as input object
images and returns the probability of the property being true.

Plan execution To achieve its goal (expressed in a formula of the language
of the planning domain), the agent generates a plan using a classical planner
(e.g., we used Fast-Forward [51]), and then it executes the plan. However, the
symbolic actions of the plan need to be translated into sequences of operations
executable by the agent’s actuators (e.g., rotate of 30◦, grasp the object in
position x, y, z, move forward of 30cm). Designing effective and robust methods
for producing this mapping is a research area that goes out of the scope of
this paper, see for instance [32]. In our experiments, we adopt state-of-the-art
path planning algorithms (based on a map learned online by the agent) and
ad-hoc compilations of actions. However, it is worth noting that we do not
assume the execution of the actions leads to the symbolic state predicted by the
planning domain. For instance, the execution of the action Go Close To(c) might
end up in a situation where the agent is not close enough to the object c and
the predicate Close To(c) is false, despite being a positive effect of the action
Go Close To(c). Moreover, the execution of a symbolic action can have effects

87

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

that are not predicted by the action schema. For instance, some properties of
an object might become true even if they are not in the positive effects of the
symbolic actions. For these reasons, after action executions, the agent must
check if the plan is still valid, and if not, it should react to the unexpected
situation, e.g., by replanning.

Problem We place an agent at a random position in an unknown environ-
ment; we initialize it with the following components: (i) a set of sensors on
the environment; (ii) a trained object detector ρo; (iii) a planning domain
M = (P,O,H); (iv) a method for executing its ground actions; (v) an un-
trained neural network ρt,p for predicting the property p of the objects of type
t, for a subset of pairs (t, p) of interest.

We focus on the online training of the ρt,p’s; our aim is to design a general
method to autonomously generate symbolic plans for producing a training set
Tt,p, for every pair (t, p) of interest, and use Tt,p to train the perception function
ρt,p.

Tt,p contains pairs (c, v), where c is (the name of) an object of type t with
the associated anchor (e.g., the visual features of the object) and v ∈ {p,¬p} is
the value of the property p. Since Tt,p is automatically created by acting in the
environment, it may contain wrong labels. We evaluate the effectiveness of our
method on the performance (precision and recall) of each ρt,p against a ground
truth data set collected independently by the agent.

7.2 The Proposed Method

We explain the proposed method with a simple example. Suppose an agent
aims to learn to recognize the property Is Turned On for objects of type Tv, it can
proceed as follows: (i) look for an object (say tv0) of type Tv; (ii) turn tv0 on
to make sure that Is Turned On(tv0) is true, (iii) take pictures of tv0 from several
perspectives, and label them as positive examples for Is Turned On. To produce
negative examples for the same property, the agent can proceed in the same
fashion, applying the action Turn Off(tv0).

The behavior explained above should be automatically produced and exe-
cuted by the agent for every learnable pair (t, p), where t denotes an object type
and p a learnable property. Therefore, in the following, we explain a procedure
that extends automatically the planning domain of the agent to express the
goal of learning p for t, and such that the procedure for collecting training data
for ρt,p is generated by a symbolic planner, and can be executed by the agent.
This method requires that, for every learnable pair (t, p), the planning domain
contains at least an operator applicable to objects of type t that makes p true,
and one that makes p false.

This means that we have to extend the planning domain with the capability
of expressing facts about its properties and types, i.e., we have to extend it with
meta predicates and names for the elements of the planning domainM.

88

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Observe(o, t, p):
pre: ¬Viewed(o, t, p)

Closed To(o)
Known(o, t, p)

eff+: Sufficient Obs(t, p)
Viewed(o, t, p)

Explore For(t, p)
pre: ∀x(Known(x, t, p) → Viewed(x, t, p))

eff+: Explored For(t)

Train(t, p, q):
pre Sufficient Obs(t, p)

Sufficient Obs(t, q)

eff+: Learned(t, p, q)

Table 7.1: Schemas for Observe, Search For and Train.

7.2.1 Extended Planning Domain for Learning

Table 7.1 summarizes how we extend the planning domain for observing, ex-
ploring, and learning.

Names for types and properties For each object type t ∈ P (e.g. Box),
we add a new constant ‘t’ (e.g ‘box’)1. For each object property p ∈ P (e.g.,
Is Open), we add two new constants, namely ‘p’ and ‘not p’, (e.g., ‘is open’ and
‘not is open’).

Epistemic predicates We extend P with predicates for stating that an agent
knows/believes that an object has a certain property in a given state. The binary
predicate Known(o,‘p’) (resp. Known(o, ‘not p’)) indicates that the agent knows that
the object o has (resp. does not have) the property p. The atom Known(x,‘p’)
is automatically added to the positive (resp. negative) effects of all the actions
that have p(x) in their positive (resp. negative) effects; similarly, the atom
Known(x,‘not p’) is automatically added to the positive (resp. negative) effects
of all the actions that have p(x) in their negative (resp. positive) effects. For
example, the atoms Known(x, ‘is turned on’) and Known(x, ‘not is turned on’) are
added to the positive and negative effects of Turn On(x), respectively. Similarly,
the atoms Known(x, ‘is turned on’) and Known(x, ‘not is turned on’) are respectively
added to the negative and positive effects of Turn Off(x).

Predicates and Operators for Observations We extend the planning do-
main with the operator Observe(o, t, p), which takes as input an object o, a type
t, and a property p. The low level execution of Observe(o, t, p) consists in ex-
tending the training dataset Tt,p with observations (i.e. images) of object o
taken from different perspectives. The positive effects of Observe(o, t, p) contain

1Quotes are used to indicate names for elements of P.

89

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

the atom Viewed(o, p), and the preconditions of Observe(o,t,p) contain the atom
¬Viewed(o, p), which prevents the agent from again observing o for the property
p in the future.

The atom Sufficient Obs(t, p) is added to the positive effects of the action
Observe(o, t, p). Whether the agent, after executing Observe(o, t, p), has not col-
lected enough observations of objects of type t with property p, the atom
Sufficient Obs(t, p) is actually false, in contrast with what is predicted by the
planning domain, and the agent has to plan for observing other objects of type
t.

Predicates and Operators for Exploration The planning domain is ex-
tended with the binary operator Explore For(t, p) that explores the environ-
ment looking for new objects of type t. The precondition of Explore For(t, p)
is that all the known objects of type t has been viewed for the property p ,i.e.,
∀x(Knows(x, t, p) → Viewed(x, t, p)). Indeed, finding a new object creates a new
object o in the planning domain. The effect of Explore For(t, p) is Explored For(t),
which indicates that a new object of type t has been found. Explored For(t) is a
positive effect of Explore For(t, p) in the planning domain. However, the actual
execution of Explore For(t, p) will not make it true until all the environment has
been explored, or a maximum number of iterations has been reached.

Predicates and Operators for Learning We extend the planning domain
with the predicate Learned(t, p, not p) that becomes true when the agent has
collected enough observations, and ρt,p is trained with them. We add to the
planning domain the operator Train(t, p, q). When the agent executes the ac-
tion Train(t, p, q), the network ρt,p is trained using Tt,p with positive exam-
ples and Tt,q with negative examples. The preconditions of this action include
Sufficient Obs(t, p) and Sufficient Obs(t, q) that guarantee to have a sufficient
number of positive and negative examples for training ρt,p. This action has
only one positive effect, which is Learned(t, p, q).

Specifying the goal formula In the extended planning domain, the goal
formula g for learning a property p for an object type t is defined as:

g = Learned(t, p, not p) ∨ Explored For(t). (7.1)

For example, suppose that an agent aims to learn the property Turned On for ob-
jects of type Tv, then g = Learned(‘tv’, ‘turned on’, ‘not turned on’)∨Found New(‘tv’).
If the current set of constants contains an object, say tv0, of type Tv such that
Viewed(tv0,‘tv’,‘is turned on’) and Viewed(tv0,‘tv’,‘not is turned on’) are both false,
then the goal is reachable by the plan:

90

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Go Close To(tv0)

Turn On(tv0)

Observe(tv0, ‘tv’,‘turned on’)

Turn Off(tv0)

Observe(tv0,‘tv’, ‘not turned on’)

Train(‘tv’, ‘turned on’,‘not turned on’).

After the execution of all the actions but the last one of the above plan, if the
agent has not collected enough training data for ‘turned on’ and ‘not turned on’, the
atoms Sufficient Obs(‘tv’,‘turned on’) and Sufficient Obs(‘tv’,‘not turned on’) will
be false, and the last action of the plan cannot be executed. In such a case, the
agent has to replan in order to find another tv which has not been observed yet.

Finally, notice that whether all the TVs known by the agent have been ob-
served for the property Turned On, then the formula ∀x(Known(x,‘tv’,‘turned on’)→
Viewed(x, ‘tv’, ‘turned on’) is true, and the goal can be achieved by generating a
plan that satisfies Found New(‘tv’) , i.e., by executing the action Explore For(‘tv’,‘turned on’),
which explores the environment for new TVs.

Algorithm 4 Plan and Act to Learn Object Props

Require: M = (P,O,H) a planning domain
Require: g =

∧
(t,p)∈TP (Learned(t, p) ∨ Explored For(t))

1: extendM with actions and predicates for learning
2: C ← names for types and properties in P
3: s← ∅
4: TTP ← {Tt,p = ∅ | (t, p) ∈ TP}
5: ρTP ← {ρt,p = random init. | (t, p) ∈ TP}
6: π ← Plan(M(C), s, g)
7: while π ̸= ⟨⟩ do
8: op← Pop(π)
9: s← s ∪ eff+(op) \ eff−(op)

10: C, TTP , ρTP ← Execute(op)
11: s← Observe()
12: π ← Plan(M(C), s, g)
13: end while

Main control cycle The main control cycle of the agent is described in Algo-
rithm 4, which takes as input a planning domainM and the goal g for learning
a set TP of type-property pairs. At the beginning, the set of constants C con-
tains only the names for types and properties, and the state s is empty (lines
2–3). For every pair (t, p) ∈ TP , the algorithm initializes the training set Tt,p

to the empty set, and the neural networks ρt,p (lines 4–5). Then, a plan π is
generated (line 6). In the while loop (lines 7–13), the state s is updated accord-
ing to the action schema (line 9). Next, the first action of the plan is executed
and the set of known constants C, the datasets Tt,p, and the neural networks

91

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

ρt,p are updated (line 10). Notice that, since the perceived effects of action
execution might not be consistent with those contained in the action schema,
sensing using the not trainable perception functions is necessary, and the state is
updated accordingly (line 11). Moreover, since π might be no more valid in the
updated state, a new plan must be generated (line 12). The algorithm termi-
nates if either the whole environment has been explored or a maximum number
of iterations has been reached, since, in such cases, the atom Explored For(t) is
set to true, and plan π for g is empty.

7.3 Experimental Analysis

We evaluate our approach on the task of collecting a dataset and training a
set of neural networks to predict the four properties Is Open, Dirty, Toggled, and
Filled on 32 object types, resulting in 38 pairs (t, p), since not all properties are
applicable to all object types.

Simulated environment We experiment with our approach in the ITHOR
[64] photo-realistic simulator of four types of indoor environments. Each envi-
ronment is a room of one of the following types: kitchen, living room, bedroom,
and bathroom. ITHOR simulates a robotic agent that navigates the environ-
ment and interacts with the objects by changing their properties (e.g., opening
a box, or turning on a tv). The agent has two sensors: a position sensor and an
onboard RGB-D camera. For our experiment, we split the 120 different envi-
ronments, provided by ITHOR, into 80 for training, 20 for validation, and 20 for
testing. Testing environments are evenly distributed among the 4 room types.

Object detector For the object detector ρo, we used the YoloV5 model [33],
which takes as input an RGB image and returns the object types and bound-
ing boxes detected in the input image. For training ρo, we have generated the
training (and validation) sets by randomly navigating in the training (and val-
idation) environments, and using the ground truth object types and bounding
boxes provided by ITHOR. The training and validation sets contain 115 object
types and are composed of 259859 and 56190 examples, respectively. For vali-
dating the object detector, we performed 300 runs (with 10 epochs for each run)
of the genetic algorithm proposed in [33].

Property predictors For the perception functions ρt,p predicting properties
we adopted a ResNet-18 model [49] with an additional fully connected linear
layer, which takes as input the RGB image of the object and returns the prob-
ability of p being true for the object. We consider that the input object has the
property p if the probability is higher than a given threshold (set to 0.5 in our
experiments).

92

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Evaluation metrics and ground truth We evaluate each trained ρt,p us-
ing precision and recall against a ground truth dataset Gt,p. This dataset is
obtained directly from the simulator by randomly navigating the 20 testing en-
vironments. To obtain the ground truth information, we have used the object
annotations provided by ITHOR. For each property, we generated a balanced
test set of positive and negative examples. In particular, for the Is Open property
we generated a test set with 8751 examples, 2512 for the Toggled property, 1310
for the Filled property, and 3304 for the Dirty one. It is worth noting that the
size of the test set for the Is Open property is higher than other ones since the
number of object types that can be opened is higher than the ones with other
properties. For a similar reason, the size of the test set for the Filled property
is the lowest one.

7.3.1 Experiments in Simulated Environments

We run our approach in each tested environment for training the neural network
model associated to ρt,p with the training set Tt,p generated online. At each run,
the agent starts in a random position of the environment and executes 2000
iterations, where at each iteration a low-level operation (e.g. move forward of
30cm) is executed.

To understand how the errors of the object detector affect the performance,
we propose two variants of our approach, namely ND (Noisy Detections) and
GTD (Ground Truth Detections). In both variants, the agent trains ρt,p on
the training set Tt,p collected in a single environment, and is evaluated on the
test set Gt,p previously generated in the same environment. In the ND variant,
the agent is provided with a pre-trained object detector ρo; while in the GTD
variant the agent is provided with a perfect ρo, i.e., the ground truth object
detections provided by ITHOR. In both variants, the neural networks ρt,p’s are
trained for 10 epochs with 1e−4 learning rate; the other hyperparameters are
set to the default values provided by PyTorch1.9 [87].

Experimental results We compare the versions ND and GTD for each learned
property, the results are shown in Table 7.2. In particular, the columns of Table
7.2 contain the object type, the number of examples collected in the training
and test sets, respectively Gt,p and Tt,p, the metrics Precision and Recall av-
eraged over all 20 environments. It is worth noting that the size of the test
set can vary among ND and GTD, since we remove from the test set the object
types that are missing in the training set, i.e. the object types that have not
been observed by the agent. This is because we are interested in evaluating
the learning performance on the object types that the agent actually manipu-
lates and observes. Moreover, there are particular object types (e.g. desktop
and showerhead in Table 7.2) that are never recognized by the object detector,
hence they are missing in the training set, and they are assigned the ‘-’ value in
Table 7.2.

In Table 7.2 are shown the results obtained for learning properties Dirty,
Filled, Is Open, and Toggled. Not surprisingly, both the weighted average preci-

93

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

size of Gt,p size of Tt,p Precision Recall

Object type ND GTD ND GTD ND GTD ND GTD
Dirty

bed 564 564 1502 671 0.95 0.57 0.43 0.61
bowl 280 280 383 1027 0.67 0.98 0.81 0.73
cloth 96 210 61 503 0.93 0.95 0.78 0.7
cup 96 262 146 986 0.63 0.99 0.95 0.54
mirror 654 678 2490 3100 0.91 0.9 0.68 0.8
mug 230 432 225 1367 0.88 0.94 0.42 0.74
pan 140 200 20 476 0.76 0.99 0.87 0.79
plate 166 406 47 1304 0.61 0.97 0.97 0.77
pot 210 272 51 929 0.76 0.99 0.91 0.98
Weighted avg - - - - 0.84 0.89 0.68 0.74

Filled

bottle 22 22 78 150 0.65 0 1 0
bowl 328 256 390 1091 0.64 1 0.73 0.77
cup 116 286 200 1028 0.92 0.9 0.56 0.68
houseplant 34 34 18 72 0.5 0.5 0.65 0.82
kettle - 84 - 337 - 0.25 - 0.4
mug 126 354 250 1136 0.8 0.86 0.51 0.56
pot 226 274 93 809 0.67 1 0.89 0.79
Weighted avg - - - - 0.7 0.86 0.72 0.66

Is Open

book 148 268 367 1471 1 0.94 0.76 0.81
box 204 204 959 1044 0.92 0.88 0.37 0.54
cabinet 2892 2892 1545 1669 0.81 0.8 0.74 0.79
drawer 3343 3747 1237 2624 0.79 0.75 0.77 0.71
fridge 400 400 803 1109 0.78 0.81 0.72 0.75
laptop 360 360 1124 1531 0.93 0.97 0.85 0.82
microwave 250 250 742 843 0.68 0.82 0.5 0.68
showercurtain 144 134 271 567 0.47 0.96 0.41 0.76
showerdoor 74 140 56 346 0.88 0.71 0.19 0.98
toilet 356 356 1024 1148 0.89 0.9 0.63 0.74
Weighted avg - - - - 0.81 0.8 0.72 0.75

Toggled

candle 54 124 3 118 0.59 0.33 0.63 0.6
cellphone - 216 - 682 - 0.84 - 0.94
coffeemachine 320 320 999 996 0.95 0.97 0.72 0.61
desklamp 12 56 254 255 1 0.91 1 0.97
desktop - 56 - 184 - 1 - 0.93
faucet 602 480 921 1663 0.84 0.85 0.89 0.92
floorlamp 44 12 88 68 0.83 0.75 0.5 1
laptop 432 432 1545 1777 0.91 0.83 0.61 0.74
microwave 252 252 1131 1124 1 1 0.76 0.72
showerhead - 46 - 12 - 1 - 1
television 222 238 269 510 0.99 0.94 0.85 0.95
toaster 280 280 713 1072 0.86 0.98 0.59 0.7

Weighted avg - - - - 0.9 0.88 0.74 0.8

Table 7.2: Size of the ground truth test set Gt,p, the generated training set Tt,p,
and performance in terms of precision and recall on the 38 type-property pairs.

sion and recall of the GTD version are almost always higher than the ND ones,
i.e. the overall learning performance is better when the agent is provided with
ground truth object detections. The recall is generally lower than the precision,
this is because, for almost all object types, the number of negative examples
is higher than the positive ones, i.e. the training datasets are not balanced.
Therefore, the agent is more likely to predict that a property is false, which
causes more false negatives and a decrease in the recall. In our experiments,
we tried to balance the observations of each object type in the collected dataset
by randomly removing positive or negative examples, but we obtained worse
learning performance. A more sophisticated strategy might apply criteria to
measure the information of each observation and remove the less informative
ones, however, we did not tackle this problem since it is out of the scope of this

94

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Figure 7.2: Pepper taking images of a laptop and asking a human to manipulate
it for learning the property Folded.

paper.
In the Dirty property results, for all object types but bed, the number of

examples in the training set is higher for GTD, as expected. The examples
of objects of type bed in GTD are lower because in all of the environments
where there are objects of type bed (i.e. the bedrooms), the agent focused on
manipulating and observing objects of types different from bed. Indeed, for
all other object types contained in bedrooms (i.e. cloth, mug and mirror), the
number of training examples collected by the GTD version is higher than the
ND one.

Moreover, for the Dirty property, the precision obtained by the GTD version
is significantly higher than the ND one for almost all object types (i.e. 7 out
of 9). For the mirror object type, the precision achieved by both ND and GTD
versions is almost equal. Remarkably, for the bed object type, the precision
of the GTD version is much lower than the ND one. This is because, for large
objects such as beds, the GTD version is more likely to collect examples not
representative for the properties to be learned. For instance, the agent provided
with ground truth object detections recognizes the bed even when it sees just a
corner of the bed, whose image is not significant for predicting whether the bed
is dirty or not. Moreover, the examples of objects of type bed in the training
set collected by ND are much higher than the GTD one.

The recall of the GTD version is not always higher than the ND one. In our
experiments, we noticed that, for both ND and GTD, an high precision typically
entails a low recall, and vice versa. This is because typically the agent collects
more positive or negative examples of a single object type. For instance, the
precision achieved by ND on object types bed, cloth, mirror, and mug is high
and the recall is low. Similarly, the recall achieved by ND on object types bowl,
cup, pan, plate, and pot is high and the precision is low. The recall obtained
by GTD is lower than the precision for all object types but bed, where there is
no significant difference. Overall, the weighted average metric values show good
performance, i.e., our approach is effective for learning to recognize properties
without any dataset given a priori as input. Similar considerations given for the
Dirty property apply to results obtained for properties Is Open, Toggled and Filled,
reported in Table 7.2. However, it is worth noting that for the Filled property,
the metric values obtained by both ND and GTD versions are particularly low

95

CHAPTER 7. PLANNING FOR LEARNING OBJECT PROPERTIES

Object type Property Precision Recall

bowl Empty 0.63 0.98
laptop Folded 0.97 1.00
book Is Open 1.00 0.99
cup Filled 0.93 0.83

Weighted avg - 0.88 0.95

Table 7.3: Precision and recall obtained by the neural networks predicting object
properties in a real environment.

for the object types houseplant and kettle. This is because, for the mentioned
object types, the Filled property is hard to recognize from the object images.
For instance, the fact that an object of type kettle is filled with water cannot
be recognized from its image, since the water in the kettle is not visible from
an external view such as the agent one. Furthermore, GTD with the object
type bottle achieves 0 value of both precision and recall, this is a particular
situation where the neural network associated with the Filled property never
predicts false positives when evaluated on examples of objects of type bottle,
hence precision and recall equals 0.

7.3.2 Real World Demonstrator

To test our method in a real-world setting, we used a Softbank’s Pepper hu-
manoid robot in PEIS home ecology [99], shown in Figure 7.2. As an object
detector, we deployed a publicly available model of YoloV5 pre-trained on the
MS-COCO dataset [76]. For manipulation actions, Pepper asks a human to
do the manipulations, due to its limited capabilities in manipulating objects.
We used Pepper’s speech-to-text engine for simple verbal interaction with the
human. Given an object type and a property, Pepper first looks for the object
and then asks the human about the property’s state. Next, it collects sam-
ples and asks the human to change the state of the property, and after human
confirmation, it further collects samples.

We run experiments for learning pairs type-property reported Table 7.3. For
each pair, we run the experiment 7 times, each time with a different setup (e.g.
different objects of the same type). At each run, Pepper collects 100 images of
the observed property, divided into 50 positive and 50 negative samples. For
each object property, we took 4 runs for training (i.e. 400 samples), and 3 runs
for testing (i.e. 300 samples). Table 7.3 shows the precision and recall obtained
on the test sets. Both the average precision and recall are high. For the simpler
properties (i.e. Is Open and Filled), Pepper almost perfectly learned to recognize
them. These results demonstrate that the proposed approach can be effective
also when applied in a real-world environment.

96

Chapter 8

Online Learning of
Reusable Abstract Models
for Object Goal Navigation

In Embodied AI, the agent’s intelligence emerges from the interaction with the
environment as the result of sensorimotor activities [107]. While acting in a real
environment, an agent should acquire and effectively represent some knowledge
of its surrounding, obtained through sensors (such as an RGB camera).

However, this knowledge acquisition task is challenging and can be accom-
plished by adopting two main approaches. On the one hand, knowledge can be
embedded in a sub-symbolic model (e.g., a neural network). Such a model can
be learned (or trained) by means of supervised or RL techniques, which can be
directly applied to the sensory data [34, 118]. On the other hand, one can adopt
a symbolic representation of the environment, which captures the high-level and
relevant aspects of the environment, abstracting away information that is not
necessary for the achievement of the agent’s goals.

In this Chapter, we follow the second approach, aiming to obtain a more
abstract and general knowledge representation that can be, eventually, reused
by the agent in the future. To this end, the agent, such as a robot navigating in
a complex environment, represents the acquired knowledge of the environment
in an abstract model that encodes the following key features: (i) semantic in-
formation about the objects in the environment and their properties; e.g., an
agent’s state is represented as “the agent is close to a fridge and a table is visible
from the current agent’s position” (see Fig. 8.1); (ii) the elements of the abstract
model are “grounded” to the perceptions; for instance, the agent stores in the
abstract model some information about each discovered object, such as the ob-
ject position, visual features, etc.; (iii) the abstract model is built online, and
incorporates the additional information the agent acquires while acting in the
environment; e.g., new objects discovered by the agent while navigating in the
environment are added to the abstract model ; (iv) the abstract model learned

97

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

A
b
st
ra
ct

m
o
d
el

chair
table
apple
oven

s0

oven
table
chair
fork

s1

sink
table
chair
. . .

s2

pizza
table
chair
. . .

s3

map

act0

act0

act1

act1

act2

act2

Figure 8.1: An agent navigating in a complex 3D environment. The agent
incrementally acquires knowledge about the environment by storing semantic
information in an abstract model. For instance, when the agent is in state s0,
objects chair and table are visible; by performing action act0, other objects
become visible, thus the abstract model is updated with the new state s1, the
transition from s0 and s1 and the topological map of the environment.

in the past should be reusable by the agent whenever it recognizes to be in an
environment that corresponds to a previously learned model. This reusability
property is essential because it allows to observe the usefulness of the learned
abstract model when the agent performs a sequence of episodic tasks in the same
environment.

We propose an approach for online learning of reusable abstract models.
With respect to our agent-environment interface (Figure 8.2), the proposed
approach is focused on learning the environment model and does not assume a
perfect perception function is given as input, but rather abstract the perceptions
through a noisy perception function. Furthermore, we do not assume high-level
actions can be automatically executed through low-level actuators, since the
actions executable by the agent are directly low-level navigation actions.

We specifically focus on the Object Goal Navigation (OGN) task [10], where
an agent placed in an unknown environment is asked to find and go close to
an object of a given goal type. Recent approaches often tackle this problem
by building semantic maps of the environments [18, 14] and exploiting SLAM
[108, 19] techniques. Instead, we propose to acquire and store the agent’s knowl-
edge about the environment in an abstract, and semantically rich, model. Con-
cretely, the learned abstract model is represented by a finite automaton whose
set of states explicitly describes what an agent views in different poses. In par-
ticular, each state is associated with an agent pose, a set of object types visible

98

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Perception function Environment model Planner Executor

Environment
ActionPerception

Figure 8.2: The agent environment interface of the proposed approach for online
learning of reusable abstract models.

in the agent’s view, and the estimated position of each object. We incremen-
tally learn (online) the abstract model by navigating the environment, similarly
to [17, 18]. The learned abstract model is then stored for future reuse. The in-
formation associated with each abstract model state is obtained from low-level
perceptions, i.e. a position and orientation sensor, and an RGB and depth cam-
era. When an agent recognizes that its current environment has been already
visited before, the agent reuses the previously learned abstract model of the en-
vironment, and updates the reused abstract model with the new observations.
For recognizing whether the current environment has previously been visited,
we design a mechanism that allows the agent to match its current state with
the states of different abstract models. We evaluate our approach on the Habi-
tat simulator [101], with 3D real environments provided by the MatterPort3D
dataset [16]. Our experiments on the OGN task show that reusing the abstract
model is helpful to improve the agent performance over a sequence of episodic
tasks (e.g., by improving the optimality of the planned paths).

Summing up, the contributions of the work described in this Chapter are
threefold: (i) the proposed framework allows an agent to incrementally enhance
and reuse previously acquired knowledge, relevant to the current environment;
(ii) we integrate sub-symbolic techniques, such as semantic segmentation and
deep RL, with symbolic reasoning on abstract models; (iii) our experimental
analysis shows that learning and reusing Abstract Models is an effective way to
exploit previously acquired knowledge, obtained from noisy observations (e.g.
noisy object detections), for solving the OGN task.

8.1 Object Goal Navigation

In the OGN task [100], an agent is required to go close to an object of a given
type (such as fridge or bed) – referred to as object goal – starting from a random
position in an unknown and static environment, within a maximum number of
actions (set to 500 in our experiments). To reach a goal object, the agent
is allowed to execute a set of actions: move_forward (by 25cm), turn_left,
turn_right (by 30°), stop. At every step, the agent executes an action and
observes the environment via a set of sensors providing an RGB-D image and the
agent pose ⟨x, y, θ⟩, relative to the initial one, which is equal to ⟨0, 0, 0⟩. A single
OGN task problem is called an episode. The agent ends an episode by executing

99

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

the stop action. At the end of each episode, if the distance between the agent
position and the closest goal object position is less than a given threshold (set
to 1m in our experiments), then the episode succeeds; otherwise the episode
fails. Solving the OGN task involves multiple challenges. Firstly, the agent has
to explore the environment in an effective way, by exploiting SLAM techniques
to learn the topological map of the environment. Secondly, the agent has to
recognize new objects in the environment whenever they are visible in its current
view, by means of, e.g., pre-trained object detection models. Finally, it has to
be able to approach the goal object, by means of path planning algorithms to
decide which navigation actions to execute.

In the standard OGN task, each episode is independent of the other, and
no information is transferred across episodes. We refer to the standard OGN
task as memory-less setting. We also introduce the with-memory setting, where
the agent can exploit the knowledge acquired in previous episodes. In the with-
memory setting, if the agent realizes that is navigating an already visited envi-
ronment, it can reuse the previously learned abstract model of the environment.
We believe that the with-memory setting is much closer to real scenarios, where
an agent should accumulate and reuse previously acquired knowledge. It is
worth noting that the with-memory setting introduces new challenges, concern-
ing how and which previously acquired knowledge can be reused in the current
situation. For example, matching states of different abstract models, or merg-
ing two different abstract models. Furthermore, in the with-memory setting,
dealing with previously acquired noisy knowledge is even more challenging, due
to error accumulation over episodes.

Abstract Model The abstract model of an environment is defined as a finite
state machine D = ⟨S,A, δ⟩ where S is a finite set of states, A is the set of
actions executable by the agent, and δ : S×A→ S is a deterministic transition
function describing transitions between states caused by actions. A state s ∈ S
is represented by a triple ⟨Fs, Cs, {Fs,c}c∈Cs

⟩ where Fs is a set of continuous
features associated with the state (i.e. the visual features extracted from the
RGB image of the agent view); Cs is a finite set of constants representing the
objects visible by the agent in s; and, for each c ∈ Cs,Fs,c is a set of continuous
features associated with object c in s (e.g. the estimated position of c).

Since the agent is aware of different environments, it keeps track of multiple
abstract models D(1), . . . , D(n). We do not assume a one-to-one correspondence
between models and environments, since the agent might associate different
models with the same environment. For example, the agent could erroneously
build two abstract models for the same environment because, the second time
it navigates in the environment, it does not realize that the environment has
already been visited.

100

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Environment (x, y, θ)
Relative pose

RGB

Depth

State creator

Segmentator

Map builder

s0

s1

s2

turn-right move-on

Abstract model

Topological map

Model reasoner

Goal object

Global policy

Path planner

Objects detected

Update

Update

Goal position

Action

Knowledge extraction Knowledge modeling Reasoning

Figure 8.3: Architecture of the proposed approach. The knowledge extraction
modules process the sensory data and updates the abstract model and topo-
logical map of the environment. The reasoning modules select a goal position
on the map to be reached for finding a goal object. Finally, the path planner
returns a path plan on the map from the agent position to the goal one.

8.2 Method

An overview of the main cycle executed at every step by the agent for reaching
a goal object G is shown in Figure 8.3. The cycle is composed of three main
phases: (i) knowledge extraction, (ii) knowledge modeling, and (iii) reasoning.
The proposed approach extends [17, 18] by allowing an agent to learn abstract
models and reuse them.

Knowledge Extraction. The segmentator module [54] extracts object seg-
mentations in the RGB image perceived by the agent. The map builder module
creates a topological map of the environment with a classical SLAM approach
[45] from the current depth image and agent pose. Finally, the state creator
module generates an abstract state s = ⟨Fs, Cs, {Fs,c}c∈Cs

⟩ where: Fs is the set
of state visual features extracted from the RGB image by an auto-encoder [127];
Cs are the object types extracted by the segmentator module; for all c ∈ Cs,Fs,c

contains: the position on the map, the bounding box, and the distance from
the agent to every visible object of type c. The object position is estimated by
adding the depth value of the bounding box centroid to the agent pose.

Knowledge Modeling. In the knowledge modeling phase, the topological
map of the environment and the current abstract model are updated with the
knowledge extracted in the knowledge extraction phase. Specifically, the current
topological map is extended with the additional information available in the
agent view, and the current state s, computed by the state creator, is added
to the abstract model, or updated if already present in the model. Finally,
the transition function is extended with (sprev, a, s), where sprev is the previous
state, and a is the last executed action.

101

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

In the with-memory setting, when a state s matches with another state in a
previously learned abstract model, the model is reloaded and merged with the
current one, according to the procedure described in Section 8.2.1.

Reasoning. In the reasoning phase, given a goal object type g, the agent
checks whether the current Abstract Model contains a state with an object of
type g (i.e., ∃s ∈ S : g ∈ Cs). In such a case, the agent selects one object of type
g and computes a path plan from its current position to the object position in
the topological map of the environment. If the abstract model contains multiple
states with objects of type g, then the agent ranks these objects according to
the number of states from which they are visible, and selects the closest one
among the five most frequently seen objects. We prefer the most frequently
seen objects in order to mitigate the errors of the segmentator. Indeed, the more
points of view from which an object is detected (i.e. the more states an object
belongs to), the less the probability that the object is a false positive detection
of the segmentator. Alternatively, if the abstract model does not contain any
state with objects of type g (e.g. while exploring a new environment, the agent
might not have seen any object of type g), a goal position is computed by the
global policy, which is a deep RL policy proposed in [17, 18]. Given the current
topological map, the global policy looks for a goal position on the topological
map that maximizes the environment exploration. Once the goal position is set,
either by the reasoner or by the global policy, the agent computes a plan with
a path planner, based on the fast marching algorithm [104], to reach the goal
position, and executes the first action in the path plan. To compute a path
plan, all unexplored areas of the environment map are considered traversable;
this enables the agent to discover new areas of the environment and objects,
thus enriching both the environment map and the abstract model.

8.2.1 Abstract Model Reuse

In the with-memory setting, the abstract model learned at each episode is stored
by the agent for future reuse. Therefore, the knowledge of the agent is consti-
tuted by n Abstract Models {D(1), . . . ,D(n)}. Whenever the agent starts a new
episode, it initializes a new abstract model D(n+1). At every step of an episode,
the agent looks if its current state s = ⟨Fs, Cs, {Fs,c}c∈Cs

⟩ matches a state in
{D(1), . . . ,D(n)}. In particular, for each set of states S(i) ∈ D(i), the match
between s and a state s(i) ∈ Si is performed by means of the cosine distance
among the state features:

s∗ = argmin
s(i)∈S(i)

i∈1,...,n

cos dist(Fs,Fs(i))

When cos dist(s, s∗) is lower than a given threshold (set to 0.3 in our ex-
periments), D(n+1) is merged with D(i) and the resulting abstract model is
considered as the current one. The resulting model contains all the states of
the two merged models, and the knowledge is incrementally enhanced through

102

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

episodes. After such a merging the agent does not look for further matching in
the current episode.

Notice that the matching could not be perfect since the poses of the agent in
the matched states s and s∗ may be slightly different. This matching difference
can propagate to the object positions stored in the abstract model, thus the
agent can rely on wrong information. To prevent these potential errors, we
propose two different strategies: namely hard and soft. In the hard strategy,
we assume that the matching is always perfect and the agent blindly believes in
the matched abstract model, i.e., it goes to the goal object position returned by
the model reasoner without looking for other goal objects on its path. In the
soft strategy, the agent tries to mitigate the effects of non-perfect matches by
looking for the goal object in the area around the goal object position given by
the matched abstract model. The dimension of the area around the goal object
is proportional to the distance between the agent position in the matching state
and the goal object one. Moreover, while navigating an environment, the agent
continuously looks for a goal object, possibly terminating the episode before
reaching the area around the goal object position provided by the abstract
model.

8.3 Experimental Analysis

In our experimental analysis, we evaluate the effectiveness and efficiency of our
approach for solving the OGN task. We aim to experimentally show that the
reuse of previously acquired knowledge, in the form of abstract models, can
improve the performance of state-of-the-art approaches for solving the OGN
task. Furthermore, we empirically demonstrate our claims with a failure anal-
ysis and a qualitative comparison of reusing vs not reusing previously acquired
knowledge.

8.3.1 Implementation Details

For the experiments, we used the Habitat Simulator [101] with the Matter-
port3D dataset [16], which contains 90 different scenes (i.e. apartments) with a
total of 194000 RGB-D images. Habitat simulates a mobile robot navigating in
each of the 90 scenes. The global policy, which selects the exploration goal po-
sition, is trained for 10 million steps on the 56 training scenes of Matterport3D
(specifically 50 training scenes and 6 validation scenes), by means of the Prox-
imal Policy Optimization RL algorithm [118]. The global policy architecture is
composed of 5 convolutional layers with the ReLU activation functions, and a
max pooling layer. For the semantic segmentation, we used the RedNet model
[54] pre-trained on the 40 object classes available in the training scenes of Mat-
terport3D. The features extractor, which computes Fs from the RGB data, is
the encoder proposed in [127], and Fs is a vector of dimension 2048. The co-
sine distance threshold for states matching is set to 0.3. The SLAM algorithm,
which computes the topological map of the environment, is based on [45].

103

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Evaluation Metrics The OGN task is evaluated with four standard metrics:
the Success Rate, the Success weighted by Path Length (SPL), the SoftSPL, and
the Distance To Success (DTS). All the evaluation metrics but the SoftSPL
have already been described in Section 6.3. The SoftSPL [14] is similar to the
SPL, but measures the path optimality in all episodes, without penalizing the
unsuccessful ones with a zero score; it is defined as:

SoftSPL =
1

N

N∑
i=1

(
1− dfini

diniti

)
p∗i

max(pi, p∗i)

where N is the number of episodes, and, for each i-th episode, p∗i is the
shortest-path length from the agent’s initial position to the closest goal object,
pi is the length of the agent path, diniti is the distance between the agent
initial position and the closest goal object, and dfini is the distance between
the agent final position and the goal object. It is worth noting that dfini

equals
0 for successful episodes. With respect to the SPL, when an episode fails the
SoftSPL takes into account the optimality of the path followed by the agent and
weights it according to the final distance from the agent to the goal object.

8.3.2 Reusing abstract models

We investigate different ways of reusing knowledge, and the corresponding ad-
vantages, by comparing the following four models:

Active Neural SLAM (ANS*): it is our implementation 1 of the ANS model [17]
described in Section 3.4; and a baseline for our evaluation, since it does
not exploit any previously acquired knowledge.

Hard Pre-explored (ANS*+HP): it is our basic extension of ANS*, based
on the approach proposed in Section 8.2. For each environment, the agent
is provided with an input abstract model, which is built by performing
10000 exploration steps; for every episode, the agent can reuse one of the
pre-acquired abstract models, by applying the hard strategy.

Soft Pre-explored (ANS*+SP): it is similar to ANS*+HP; however, the
agent reuses the provided abstract models by applying the soft strategy.

Soft Incremental (ANS*+SI): the agent is provided with no abstract model
as input; afterward, during each episode, the agent can reuse and incre-
mentally extend the abstract models learned in previous episodes, by ap-
plying the soft strategy.

1We checked the coherence of our implementation by running the same experiments as
in [17]; The results achieved by our implementation of ANS are comparable to the results
provided by ANS authors in [17]. Specifically, ANS achieved 7.056, 0.321 and 0.119 of DTS,
success rate, and SPL, respectively; our implementation obtained 6.721, 0.313 and 0.127 on
the same metrics.

104

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Method DTS↓ Success↑ SPL↑ SoftSPL↑
ANS* 6.417 0.240 0.102 0.191

ANS*+HP 6.352 0.251 0.105 0.206
ANS*+SP 6.294 0.258 0.117 0.214
ANS*+SI 6.155 0.279 0.131 0.233

Table 8.1: Results achieved by the baseline ANS* and our approach variants
on the Matterport3D validation set.

The fundamental difference betweenANS*/ANS*+SI andANS*+HP/ANS*+SP
is that the former do not exploit pre-acquired knowledge, while the latter require
such knowledge. Moreover, ANS*+SI is our only version in which the agent
extends the abstract models with the additional knowledge acquired through
episodes. Finally, all the versions but ANS* use the with-memory setting de-
scribed in Section 8.1.

In Table 8.1, we report the results of our variants on the validation set of
Matterport3D, composed of 2195 episodes in 11 environments., that is a stan-
dard benchmark for the OGN task [18, 14]. ANS*+HP achieves higher results
than ANS*, as expected, since ANS*+HP is provided with additional input
knowledge. Furthermore, ANS*+SP obtains better results than ANS*+HP,
due to the fact that the soft strategy mitigates the errors introduced by the
matching of abstract models in different episodes (Section 8.2.1). Remarkably,
ANS*+SI outperforms all other versions, providing a relative improvement of
+8.13% in success and +11.9% in SPL w.r.t. ANS*+SP. The results of Table
8.1 show that the incremental learning of abstract models is more effective than
providing the agent with the pre-acquired input abstract models.

Furthermore, the fact that the agent starts in each episode from a dif-
ferent position allows the ANS*+SI variant to discover environment areas
that, for some large environments, are hardly reachable with a single long pre-
exploration. Notably, ANS*+SI is able to match states of different abstract
models in 69.7% of the episodes.

8.3.3 Effects of Knowledge Accumulation

We experimentally evaluate how accumulating knowledge in the abstract mod-
els affects the agent performance for solving the OGN task. To better investi-
gate the usefulness of knowledge accumulation, we limit the quantity of noise
recorded in the abstract model (e.g., the false positives given by the semantic
segmentator). Therefore, we evaluate our approach on a subset of the Matter-
port3D validation set, where the semantic segmentator achieves better perfor-
mance. This subset is built as in [18] and contains episodes with the following
goal object types: chair, sofa, plant, bed, toilet, tv, table, and sink.

Table 8.2 reports the results achieved by ANS* and ANS*+SI. The results
show that reusing abstract models (ANS*+SI) allows the agent to follow better
paths (15% SPL) and go closer to the goal objects (6.34m DTS), with respect
to ANS*.An analysis of the success rate evolution through episodes is shown

105

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Method DTS↓ Success↑ SPL↑
ANS* 6.721 0.313 0.127

ANS*+SI 6.347 0.354 0.150

Table 8.2: Results obtained on a subset of the validation set of Matter-
port3D, containing object types which are in both MS-COCO and Matter-
Port3D datasets (658 episodes across 11 environments).

Figure 8.4: The average success rate and moving average success rate achieved
by ANS* and ANS*+SI. The window size of the moving average success rate
is equal to 5.

in Figure 8.4. The dashed curves are the success rates achieved by ANS*
and ANS*+SI, during each episode, and averaged over all 11 environments.
For example, when the number of episodes equals 0, the reported value is the
average success rate across the 11 environments in their first episode. The thick
curves represent the moving averages of the success rate with a window size of
5. For example, when the number of episodes equals 10, the reported value is
the average success rate across the 11 environments and episodes 8–12. The
comparison among the moving averages of ANS* and ANS*+SI, shown in
Figure 8.4, confirms that accumulating knowledge over episodes consistently
enhances the success rate.

8.3.4 Semantic Maps and Abstract Models

A different method for representing knowledge about the environments is by
means of semantic maps [14]. Semantic maps are topological maps of the en-
vironments enriched with information about object types. We compare ap-
proaches based on semantic maps with our method and investigate how semantic
maps and abstract models can be combined.

A method for solving the OGN task, which exploits an input semantic map,
is SMNet [14]. In SMNet, the plan to reach a goal object is provided by
computing the shortest path from the current agent position to the position of

106

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Method DTS↓ Success↑ SPL↑ SoftSPL↑
SMNet[14] 7.316 0.096 0.057 0.087

SMNet (GT) 5.658 0.312 0.207 0.282
ANS*+SI 6.155 0.279 0.131 0.233

SemExp*+SI 5.785 0.347 0.151 0.274

Table 8.3: Results obtained on the validation set of the Matterport3D dataset.
Notice that SMNet (GT), as described in [14], exploits input semantic maps
with ground truth free areas.

an object of the goal type in the input semantic map. Note that, in SMNet, the
input semantic map may be incomplete. However, SMNet has the simplifying
assumption that the absolute position of the agent is known, therefore matching
different semantic maps is not necessary. In [14], authors also consider a version
of SMNet, named SMNet(GT), that assumes ground truth free space maps,
i.e., input semantic maps that, despite being possibly incomplete, has the full
information about the environment areas traversable by the agent.

Another method that exploits semantic maps is SemExp [18], which is
based on ANS; however, in SemExp, the global policy takes semantic maps as
input, rather than topological maps as in ANS. The global policy of SemExp
seeks to directly find the goal object position, instead of finding a position to
be reached in order to maximize the environment exploration. For evaluating
how semantic maps and abstract models can be combined, we combine our SI
approach with SemExp; this version is called SemExp*+SI.

Table 8.3 compares our different versions for incrementally reusing knowledge
against SMNet and SMNet(GT). We perform the experiment on the same
validation set used in [14], which is the benchmark validation set for the OGN
task of the Matterport3D dataset. Remarkably, ANS*+SI and SemExp*+SI
outperform SMNet by a large margin. Furthermore, the global policy adopted
in SemExp*+SI increases all the metrics w.r.t. ANS*+SI policy. The high
success rate of SemExp*+SI w.r.t. ANS*+SI (+6.8%) suggests that the
way in which the environments are explored plays a crucial role in how the
learned abstract models are reusable. Interestingly, SemExp*+SI has similar
performances to SMNet (GT), despite SMNet (GT) exploits input semantic
maps with ground truth free space.

8.3.5 Limitations and Failure Analysis

One of the major limitations of our model comes from the abstraction of the
agent’s perceptions. The output of the semantic segmentator, as well as the
visual features associated with each state, may be affected by errors. Further-
more, in the without-memory setting, the abstract model does not provide a
significant added value with respect to simpler representations, such as seman-
tic maps. However, this is not the case in the with-memory setting, where the
abstraction encoded in the abstract models is a cornerstone for the reuse of

107

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Figure 8.5: Analysis of the failure causes of ANS*+SI and SemExp*+SI
evaluated on the validation set of Matterport3D.

previously acquired knowledge.
In the following, we report a failure analysis for understanding why the

agent fails in the SI setting. In particular, we quantitatively investigate how
the errors introduced by the semantic segmentator affect the reliability of the
learned abstract models. To this aim, we randomly sample 200 failed episodes
from the experiment in Table 8.2, where a previously learned abstract model
has been reused. We group the failure causes into five classes: (i) Last mile
(navigation failure): the agent correctly navigated to an instance of the goal
object but was not able to reach it (i.e. the DTS is less than 2 meters but
greater than 1 meter); (ii) Hallucination (abstract model failure): the
agent approached the goal position extracted from the abstract model, but there
was no goal object nearby the goal position; (iii)Detection (sensors failure):
the agent, during its path to the goal position suggested by the abstract model,
found a wrong goal object (i.e. an object of a type different from the goal one),
and approached it; (iv) Exploration (abstract model incompleteness): the
reused abstract model had no information about possible goal object positions,
and the agent could not find any goal object within 500 steps; (v) Others: the
agent reused the abstract model but had a generic failure (e.g. getting stuck in
a corner of a room).

Interestingly, we have two possible failure causes directly linked to the reloaded
abstract model: exploration, where the agent has not enough information about
the environment, and hallucination, where the agent relies on wrong informa-
tion. In Figure 8.5 are reported the statistics about the failed episodes. The ab-
stract model generated by SemExp*+SI gave fewer failures w.r.t. ANS*+SI
in the exploration and hallucination classes, highlighting how the different global
policy affects the creation of the abstract models. Furthermore, the majority
of the failures are in the detection class for both models. This suggests that a
better semantic segmentator could improve the overall performance by a large
margin.

108

CHAPTER 8. ONLINE LEARNING OF REUSABLE ABSTRACT
MODELS FOR OBJECT GOAL NAVIGATION

Figure 8.7: A successful episode with the ANS*+SI variant. The agent cor-
rectly matched its current state with one in a previously learned Abstract Model
and exploited the information provided by the reused Abstract Model for suc-
cessfully navigating towards a goal object sofa.

8.3.6 Qualitative examples

In Figure 8.6 and 8.7, we report a qualitative comparison among ANS* and
ANS*+SI on the same episode in a specific scene of the MatterPort3D dataset.

ANS* starts by exploring the environment, but it never encounters an object
of the goal type sofa. Furthermore, the exploration leads the agent very far (i.e.
more than 10 meters) from the nearest sofa to the agent’s initial position. This is
because the environment of the considered scene is very large w.r.t. the average
dimension of other environments, and the agent is likely to follow paths towards
environment areas that are far from the goal object. Therefore, with a limited
number of 500 steps, the agent cannot easily find a goal object, when navigating
into the environment for the first time. Figure 8.7 shows the same episode with
the exploitation of a previously learned abstract model. Particularly, at step 15,
the agent state matches a state of the previously learned abstract model, which
is then reused. The agent position is rescaled to match the reused domain one,
and the agent selects the goal position provided by the reused abstract model.
Afterward, the agent creates an exploration area around the goal position, which
it has to explore for finding the goal object. At step 82, the agent reached the
exploration area and found the sofa, therefore it finally approached the sofa and
the episode ended successfully.

Figure 8.6: A failed episode with the ANS* variant. The agent explored the
environment for 500 steps without finding the goal object sofa. Green regions
on the map represent obstacles, light blue regions are explored areas, and the
blue point is the goal position.

109

Chapter 9

Conclusions and Future
Works

The integration of learning and planning for agents acting in unknown envi-
ronments can be grouped into two main paradigms: learning for planning and
planning for learning. Many works in the AI planning literature focus on learn-
ing for planning, e.g., most of the work on learning planning domains, or the
majority of the approaches that integrate RL and symbolic planning. Less
attention has been paid to planning for learning, i.e., to approaches that take
advantage of symbolic planning for applying learning methods. One of the main
novelties of planning for learning approaches is that they specify the learning
problem as a planning problem, where the planning goal defines a set of goal
states that allows an agent to gain experience and knowledge useful for learning.

On the learning for planning side, the integration of learning and planning
allows to overcome the limitations of planning, which perform reasoning at
a high-level of abstraction, assuming an agent can observe its symbolic state
without necessarily considering the low-level perceptions given by its sensors.
Learning methods allows to drop this simplifying assumption, providing an agent
with the capability of linking its state perceived through continuous sensors with
its symbolic state. It is worth noting that there is an additional complexity when
dealing with symbolic states derived from sensory data: the agent symbolic state
is not necessarily correct and complete. For example, a robotic agent provided
with an on-board RGB camera has a partial view of the environment, and,
since the perception capabilities of the agent are not perfect, the detections of
objects in the image may be noisy and incomplete. Moreover, when operating
in complex and partially observable environments (e.g. an apartment), it is
very hard to provide an agent with a model of the environment that perfectly
specifies all possible states and transitions.

On the planning for learning side, most data-driven learning techniques as-
sume a sufficiently large amount of data is given, and learning is performed
offline. However, in many real scenarios, such a large amount of data is not

110

CHAPTER 9. CONCLUSIONS AND FUTURE WORKS

always available a priori, e.g., when the environment is unknown. Exploiting
symbolic planning enables an agent to autonomously collect data necessary for
applying data-driven learning methods online. This is particularly important for
developing an agent that improve its perception capabilities and adapt them to
operate in its current environment. Nonetheless, taking advantage of symbolic
planning allows an agent to plan for reaching informative states, i.e., states
from which the agent can acquire new knowledge about the environment, by
perceiving and interacting with the environment.

We have proposed an architecture for integrating learning, planning, and
acting. In our approach, an agent maps its perceptions of the environment into
a symbolic state, and learns a high-level model of the environment dynamics
by executing symbolic actions through its actuators. We firstly focused on the
problem of learning an extensional representation of a discrete and deterministic
planning domain from continuous perceptions [69]; assuming the capability of
executing symbolic actions through actuators was given. Then, we proposed an
approach for learning action models under the assumption of full observability
[70]. The proposed approach incrementally learns an action model by selecting
goals to reach and actions to execute that allow to acquire useful information
about the operators. We showed some important theoretical properties of com-
pleteness and integrity of the learned models. The proposed approach achieved
good learning performance on a large set of benchmarks from the International
Planning Competitions (IPCs), and outperformed a state-of-the-art method for
learning action models offline. The proposed method works with full observ-
ability; extension to partial observability is part of future work. Afterward, we
addressed the problem of online grounding of planning domains in unknown
environments [71]. The proposed solution enables an agent to map the sensory
data into a symbolic state, allowing it to perform and exploit efficient planning
in a wide variety of different environments. We have tested the proposed method
on different tasks, obtaining better results than RL-based approaches. Future
work will focus on learning a policy to compile high-level actions into low-level
executable operations. Next, we presented a method that allows an agent to in-
crementally acquire and store knowledge about a set of unknown environments
[13]. Our method reuses the acquired knowledge, represented as an abstract
model, when the agent operates in a previously visited environment. We evalu-
ated the proposed method on the object goal navigation task. Our experiments
showed that reusing abstract models of previously visited environments can be
effective for solving the object goal navigation task. We experimented with dif-
ferent strategies of reusing the acquired knowledge, empirically proving that the
abstract models incrementally learned achieve better performance than offline
learned ones. Finally, we addressed the challenge of using symbolic planning
to automate the process of learning perception capabilities [72]. We focus on
learning object properties, assuming a pre-trained object detector is given. We
experimentally showed that our approach is feasible and effective for learning
the visual properties of objects in both simulated and real environments. Still a
lot of work must be done to address the general problem of planning and acting
to learn in a physical environment.

111

Acknowledgements

I thank my (future) wife Benedetta for her endless love, comprehension, pa-
tience, and many other things. I probably would not have achieved the require-
ments for starting a Ph.D. without her. I thank my parents for their support
and guidance, I hope to do for them in the future what they have done for me
in the past. I also thank my grandparents for always believing in me, I wish
they could see me finishing the Ph.D.

I thank Prof. Renata Mansini, which advised me during my bachelor’s and
master’s thesis, and pushed me towards starting a Ph.D., encouraging and help-
ing me. I thank Prof. Luciano Serafini, the mentor of my Ph.D., that spent his
time teaching me how to do research, and not only. I still have to learn a lot,
but I hope I will be for my future students what Luciano has been for me. I
also thank Dr. Paolo Traverso, the Director of Research at FBK, for motivating
me during my Ph.D., and being an example of what a real leader is. Paolo and
Luciano are giant researchers that showed me the way forward for becoming a
good researcher, and not only; I hope I will not lose it in the future. I thank my
advisors from the University of Brescia, Prof. Alfonso Gerevini, for guiding me
through the Ph.D., and Prof. Alessandro Saetti, for the time spent discussing
and all his efforts. Luciano, Paolo, Alfonso, and Alessandro advised me during
the Ph.D., if we did good research, I think is mainly thanks to them. I thank
Prof. Alessandro Saffiotti for the opportunity to visit the University of Örebro,
collaborate with his research group, and for all the support during my visit.

Finally, I thank all my friends from FBK and the University of Brescia, going
beyond being colleagues has also strongly improved my daily working life, and
has been significantly helpful when going through stressful periods. Similarly, I
thank all friends I met during my visit to the University of Örebro; they made
my experience unforgettable.

112

Bibliography

[1] David Abel, Dilip Arumugam, Lucas Lehnert, and Michael L. Littman.
State abstractions for lifelong reinforcement learning. In ICML, 2018.

[2] David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam,
Doina Precup, and Michael Littman. Value preserving state-action ab-
stractions. In International Conference on Artificial Intelligence and
Statistics, pages 1639–1650. PMLR, 2020.

[3] Alper Ahmetoglu, M Yunus Seker, Justus Piater, Erhan Oztop, and
Emre Ugur. Deepsym: Deep symbol generation and rule learning from
unsupervised continuous robot interaction for planning. arXiv preprint
arXiv:2012.02532, 2020.

[4] Diego Aineto, Sergio Jiménez Celorrio, and Eva Onaindia. Learning action
models with minimal observability. Artif. Intell., 275:104 – 137, 2019.
ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2019.05.003.

[5] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Doso-
vitskiy, Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik,
Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of embodied nav-
igation agents. arXiv preprint arXiv:1807.06757, 2018.

[6] Masataro Asai. Unsupervised grounding of plannable first-order logic rep-
resentation from images. In ICAPS, 2019.

[7] Masataro Asai and Alex Fukunaga. Classical planning in deep latent
space: Bridging the subsymbolic-symbolic boundary. In AAAI, 2018.

[8] Masataro Asai and Christian Muise. Learning neural-symbolic descrip-
tive planning models via cube-space priors: the voyage home (to strips).
In Proceedings of the Twenty-Ninth International Joint Conferences on
Artificial Intelligence, pages 2676–2682, 2021.

[9] Fahiem Bacchus. The AIPS ’00 planning competition. AI Magazine, 22
(3):47–56, 2001.

[10] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr
Maksymets, Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, and

113

CHAPTER 9. BIBLIOGRAPHY

Erik Wijmans. ObjectNav revisited: On evaluation of embodied agents
navigating to objects. arXiv preprint arXiv:2006.13171, 2020.

[11] Jeannette Bohg, Karol Hausman, Bharath Sankaran, Oliver Brock, Dan-
ica Kragic, Stefan Schaal, and Gaurav Sukhatme. Interactive perception:
Leveraging action in perception and perception in action. IEEE Transac-
tions on Robotics, 33:1273–1291, 2017.

[12] Blai Bonet and Hector Geffner. Learning first-order symbolic representa-
tions for planning from the structure of the state space. In ECAI, 2020.

[13] Tommaso Campari, Leonardo Lamanna, Paolo Traverso, Luciano Serafini,
and Lamberto Ballan. Online learning of reusable abstract models for
object goal navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14870–14879, 2022.

[14] Vincent Cartillier, Zhile Ren, Neha Jain, Stefan Lee, Irfan Essa, and
Dhruv Batra. Semantic mapnet: Building allocentric semanticmaps and
representations from egocentric views. 2021.

[15] Michal Certicky. Real-time action model learning with online algorithm
3SG. Applied Artificial Intelligence, 28(7):690–711, 2014.

[16] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias
Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang.
Matterport3D: Learning from RGB-D data in indoor environments. 2017.

[17] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav
Gupta, and Ruslan Salakhutdinov. Learning to explore using active neural
slam. arXiv preprint arXiv:2004.05155, 2020.

[18] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta,
and Russ R Salakhutdinov. Object goal navigation using goal-oriented se-
mantic exploration. Advances in Neural Information Processing Systems,
33:4247–4258, 2020.

[19] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and
Saurabh Gupta. Neural topological slam for visual navigation. 2020.

[20] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Se-
mantics and Structure in Statistical Translation, pages 103–111, 2014.

[21] Silvia Coradeschi and Alessandro Saffiotti. An introduction to the anchor-
ing problem. Robotics and autonomous systems, 43(2-3):85–96, 2003.

[22] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo
tree search. In International conference on computers and games, pages
72–83. Springer, 2006.

114

CHAPTER 9. BIBLIOGRAPHY

[23] Stephen Cresswell and Peter Gregory. Generalised domain model acqui-
sition from action traces. In Twenty-First International Conference on
Automated Planning and Scheduling, 2011.

[24] Stephen Cresswell, Thomas Leo McCluskey, and Margaret Mary West.
Acquiring planning domain models using LOCM. Knowledge Eng. Review,
28(2):195–213, 2013.

[25] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised
learning. In Machine learning techniques for multimedia, pages 21–49.
Springer, 2008.

[26] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on
policy search for robotics. Foundations and Trends® in Robotics, 2(1–2):
1–142, 2013.

[27] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric
Kolve, Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli Vander-
Bilt, Matthew Wallingford, Luca Weihs, Mark Yatskar, and Ali Farhadi.
RoboTHOR: An Open Simulation-to-Real Embodied AI Platform. In
CVPR, 2020.

[28] Nils Dengler, Tobias Zaenker, Francesco Verdoja, and Maren Bennewitz.
Online object-oriented semantic mapping and map updating. In 2021
European Conference on Mobile Robots (ECMR), pages 1–7. IEEE, 2021.

[29] Pedro Zuidberg Dos Martires, Nitesh Kumar, Andreas Persson, Amy
Loutfi, and Luc De Raedt. Symbolic learning and reasoning with noisy
data for probabilistic anchoring. Frontiers in Robotics and AI, 7, 2020.

[30] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan.
A survey of embodied ai: From simulators to research tasks. IEEE Trans-
actions on Emerging Topics in Computational Intelligence, 2022.

[31] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri.
Activation functions in deep learning: a comprehensive survey and bench-
mark. Neurocomputing, 2022.

[32] Manfred Eppe, PD Nguyen, and Stefan Wermter. From semantics to
execution: Integrating action planning with reinforcement learning for
robotic tool use. arXiv preprint arXiv:1905.09683, 2019.

[33] Glenn Jocher et al. ultralytics/yolov5: v6.0 - YOLOv5n ‘Nano’ models,
Roboflow integration, TensorFlow export, OpenCV DNN support, Octo-
ber 2021.

[34] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese. Scene
memory transformer for embodied agents in long-horizon tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 538–547, 2019.

115

CHAPTER 9. BIBLIOGRAPHY

[35] Alan Fern, Sung Wook Yoon, and Robert Givan. Learning domain-specific
control knowledge from random walks. In ICAPS, 2004.

[36] Maria Fox and Derek Long. The 3rd international planning competition:
Results and analysis. CoRR, abs/1106.5998, 2011.

[37] Yoav Freund and Robert E Schapire. Large margin classification using the
perceptron algorithm. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 209–217, 1998.

[38] Ramón Garćıa-Mart́ınez and Daniel Borrajo. An integrated approach of
learning, planning, and execution. J. Intell. Robotic Syst., 29(1):47–78,
2000.

[39] M. Ghallab, D. S. Nau, and P. Traverso. Automated Planning and Acting.
Cambridge University Press, 2016.

[40] Yolanda Gil. Learning new planning operators by exploration and exper-
imentation. In AAAI, 1994.

[41] Yolanda Gil. Learning by experimentation: Incremental refinement of
incomplete planning domains. In ICML, 1994.

[42] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[43] Peter Gregory and Stephen Cresswell. Domain model acquisition in the
presence of static relations in the lop system. In Proceedings of the Inter-
national Conference on Automated Planning and Scheduling, volume 25,
pages 97–105, 2015.

[44] Martin Günther, JR Ruiz-Sarmiento, Cipriano Galindo, Javier González-
Jiménez, and Joachim Hertzberg. Context-aware 3d object anchoring for
mobile robots. Robotics and Autonomous Systems, 110:12–32, 2018.

[45] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and
Jitendra Malik. Cognitive mapping and planning for visual navigation.
2017.

[46] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David
Ha, Honglak Lee, and James Davidson. Learning latent dynamics for
planning from pixels. In International conference on machine learning,
pages 2555–2565. PMLR, 2019.

[47] Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez,
Fabio Viola, Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar
Veličković, and Théophane Weber. On the role of planning in model-based
deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

[48] Hado Hasselt. Double q-learning. Advances in neural information pro-
cessing systems, 23, 2010.

116

CHAPTER 9. BIBLIOGRAPHY

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[50] Malte Helmert. The fast downward planning system. J. Artif. Intell. Res.,
26:191–246, 2006.

[51] Jörg Hoffmann. Ff: The fast-forward planning system. AI magazine, 22
(3):57–57, 2001.

[52] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feed-
forward networks are universal approximators. Neural networks, 2(5):
359–366, 1989.

[53] Michael Janner, Sergey Levine, William T Freeman, Joshua B Tenen-
baum, Chelsea Finn, and Jiajun Wu. Reasoning about physical inter-
actions with object-oriented prediction and planning. arXiv preprint
arXiv:1812.10972, 2018.

[54] Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang. Rednet: Resid-
ual encoder-decoder network for indoor rgb-d semantic segmentation.
arXiv preprint arXiv:1806.01054, 2018.

[55] Brendan Juba and Roni Stern. Learning probably approximately complete
and safe action models for stochastic worlds. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(9):9795–9804, 2022.

[56] Brendan Juba, Hai S Le, and Roni Stern. Safe learning of lifted ac-
tion models. In Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning, volume 18, pages 379–389,
2021.

[57] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Re-
inforcement learning: A survey. J. Artif. Intell. Res., 4:237–285, 1996.

[58] Kei Kase, Chris Paxton, Hammad Mazhar, Tetsuya Ogata, and Dieter
Fox. Transferable task execution from pixels through deep planning do-
main learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 10459–10465. IEEE, 2020.

[59] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes.
In ICLR, 2014.

[60] Hiroaki Kitano and Satoshi Tadokoro. Robocup rescue: A grand challenge
for multiagent and intelligent systems. AI Mag., 22(1):39–52, 2001.

[61] Andreas Knoblauch, Rebecca Fay, Ulrich Kaufmann, Heiner Markert, and
Günther Palm. Associating words to visually recognized objects. In An-
choring symbols to sensor data. Papers from the AAAI Workshop. Tech-
nical Report WS-04-03, pages 10–16. AAAI Press Menlo Park, 2004.

117

CHAPTER 9. BIBLIOGRAPHY

[62] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning.
In European conference on machine learning, pages 282–293. Springer,
2006.

[63] Daphne Koller and Nir Friedman. Probabilistic graphical models: princi-
ples and techniques. MIT press, 2009.

[64] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs,
Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali
Farhadi. AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv,
2017.

[65] George Konidaris. On the necessity of abstraction. Current opinion in
behavioral sciences, 29:1–7, 2019.

[66] George Dimitri Konidaris and Andrew G Barto. Building portable options:
Skill transfer in reinforcement learning. In IJCAI, volume 7, pages 895–
900, 2007.

[67] Roshan Kumari and Saurabh Kr Srivastava. Machine learning: A review
on binary classification. International Journal of Computer Applications,
160(7), 2017.

[68] Hanard Kurutach, Aviv Tamar, Ge Yang, Stuart Russell, and Pieter
Abbeel. Learning plannable representations with causal infogan. In NIPS,
2018.

[69] Leonardo Lamanna, Alfonso Emilio Gerevini, Alessandro Saetti, Luciano
Serafini, and Paolo Traverso. On-line learning of planning domains from
sensor data in pal: Scaling up to large state spaces. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 11862–
11869, 2021.

[70] Leonardo Lamanna, Alessandro Saetti, Luciano Serafini, Alfonso Gerevini,
and Paolo Traverso. Online learning of action models for pddl planning.
In IJCAI-2021, 2021.

[71] Leonardo Lamanna, Luciano Serafini, Alessandro Saetti, Alfonso Emilio
Gerevini, and Paolo Traverso. Online grounding of symbolic planning
domains in unknown environments. In Proceeding of the 19th International
Conference on Principles of Knowledge Representation and Reasoning,
KR 2022, 2022.

[72] Leonardo Lamanna, Luciano Serafini, Mohamadreza Faridghasemnia,
Alessandro Saffiotti, Alessandro Saetti, Alfonso Gerevini, and Paolo
Traverso. Planning for learning object properties. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, 2023.

118

CHAPTER 9. BIBLIOGRAPHY

[73] Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal
convolutional networks: A unified approach to action segmentation. In
European conference on computer vision, pages 47–54. Springer, 2016.

[74] Lihong Li, Thomas J. Walsh, and Michael L. Littman. Towards a unified
theory of state abstraction for mdps. In ISAIM, 2006.

[75] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. Continuous con-
trol with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[76] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco:
Common objects in context. In European conference on computer vision,
pages 740–755. Springer, 2014.

[77] Amy Loutfi, Silvia Coradeschi, and Alessandro Saffiotti. Maintaining co-
herent perceptual information using anchoring. In IJCAI, pages 1477–
1482, 2005.

[78] D. Lyu, F. Yang, B. Liu, and S. Gustafson. SDRL: Interpretable and
data-efficient deep reinforcement learning leveraging symbolic planning.
In AAAI, 2019.

[79] Zhihao Ma, Yuzheng Zhuang, Paul Weng, Hankz Hankui Zhuo, Dong Li,
Wulong Liu, and Jianye Hao. Learning symbolic rules for interpretable
deep reinforcement learning. arXiv preprint arXiv:2103.08228, 2021.

[80] Dastan Maulud and Adnan M Abdulazeez. A review on linear regres-
sion comprehensive in machine learning. Journal of Applied Science and
Technology Trends, 1(4):140–147, 2020.

[81] Drew McDermott, Malik Ghallab, A. Howe, Craig A. Knoblock, A. Ram,
M. Veloso, Daniel S. Weld, and David E. Wilkins. PDDL—The planning
domain definition language. Technical Report DCS TR-1165, Yale Center
for Computational Vision and Control, New Haven, Connecticut, 1998.

[82] Drew V. McDermott. The 1998 AI planning systems competition. AI
Magazine, 21(2):35–55, 2000.

[83] Piotr Mirowski. Learning to navigate. In 1st International Workshop on
Multimodal Understanding and Learning for Embodied Applications, pages
25–25, 2019.

[84] V. Mnih, K. Kavukcuoglu, D. Silver, A.i A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

119

CHAPTER 9. BIBLIOGRAPHY

[85] Kira Mourão, Luke S. Zettlemoyer, Ronald P. A. Petrick, and Mark Steed-
man. Learning STRIPS operators from noisy and incomplete observations.
In UAI, 2012.

[86] Arsalan Mousavian, Alexander Toshev, Marek Fǐser, Jana Košecká,
Ayzaan Wahid, and James Davidson. Visual representations for semantic
target driven navigation. In 2019 International Conference on Robotics
and Automation (ICRA), pages 8846–8852. IEEE, 2019.

[87] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

[88] Andreas Persson, Pedro Zuidberg Dos Martires, Luc De Raedt, and Amy
Loutfi. Semantic relational object tracking. IEEE Transactions on Cog-
nitive and Developmental Systems, 12(1):84–97, 2019.

[89] Andreas Persson, Pedro Miguel Zuidberg Dos Martires, Luc De Raedt,
and Amy Loutfi. Probanch: a modular probabilistic anchoring framework.
In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence,, pages 5285–5287. International Joint Conferences
on Artificial Intelligence, 2020.

[90] Arthur George Richards. Robust constrained model predictive control. PhD
thesis, Massachusetts Institute of Technology, 2005.

[91] Matthew Richardson and Pedro Domingos. Markov logic networks. Ma-
chine learning, 62(1):107–136, 2006.

[92] Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, and Henry Sol-
dano. Incremental learning of relational action rules. In ICMLA, 2010.

[93] Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, and Henry Sol-
dano. Active learning of relational action models. In ILP, 2011.

[94] Ivan D Rodriguez, Blai Bonet, Javier Romero, and Hector Geffner. Learn-
ing first-order representations for planning from black box states: New
results. In Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning, volume 18, pages 539–548,
2021.

[95] Usha Ruby and Vamsidhar Yendapalli. Binary cross entropy with deep
learning technique for image classification. Int. J. Adv. Trends Comput.
Sci. Eng, 9(10), 2020.

[96] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747, 2016.

120

CHAPTER 9. BIBLIOGRAPHY

[97] Jose-Raul Ruiz-Sarmiento, Martin Günther, Cipriano Galindo, Javier
González-Jiménez, and Joachim Hertzberg. Online context-based object
recognition for mobile robots. In 2017 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), pages 247–252.
IEEE, 2017.

[98] Stuart J Russell and Peter Norvig. Artificial intelligence a modern ap-
proach. Pearson Education, Inc., 2010.

[99] Alessandro Saffiotti, Mathias Broxvall, Marco Gritti, Kevin LeBlanc,
Robert Lundh, Jayedur Rashid, Beom-Su Seo, and Young-Jo Cho. The
peis-ecology project: Vision and results. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2329–2335, 2008. doi:
10.1109/IROS.2008.4650962.

[100] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy, Thomas Funkhouser,
and Vladlen Koltun. Minos: Multimodal indoor simulator for navigation
in complex environments. arXiv preprint arXiv:1712.03931, 2017.

[101] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik
Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra
Malik, et al. Habitat: A platform for embodied ai research. 2019.

[102] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):604–609, 2020.

[103] Luciano Serafini and Paolo Traverso. Learning abstract planning domains
and mappings to real world perceptions. In AI*IA 2019 - Advances in Ar-
tificial Intelligence, volume 11946 of Lecture Notes in Computer Science,
pages 461–476. Springer, 2019.

[104] James A Sethian. Fast-marching level-set methods for three-dimensional
photolithography development. In Optical Microlithography IX, volume
2726, pages 262–272. International Society for Optics and Photonics, 1996.

[105] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra,
and Martin Riedmiller. Deterministic policy gradient algorithms. In In-
ternational conference on machine learning, pages 387–395. PMLR, 2014.

[106] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[107] Linda Smith and Michael Gasser. The development of embodied cognition:
Six lessons from babies. Artificial Life, 11(1–2):13–30, January 2005.

121

CHAPTER 9. BIBLIOGRAPHY

[108] Cyrill Stachniss, John J. Leonard, and Sebastian Thrun. Simultaneous
localization and mapping. In Springer Handbook of Robotics, Springer
Handbooks, pages 1153–1176. Springer, 2016.

[109] Roni Stern and Brendan Juba. Efficient, safe, and probably approxi-
mately complete learning of action models. In 26th International Joint
Conference on Artificial Intelligence, IJCAI 2017, pages 4405–4411. In-
ternational Joint Conferences on Artificial Intelligence, 2017.

[110] R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction.
Adaptive computation and machine learning. MIT Press, 1998.

[111] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to
multi-layer feed-forward neural networks. Chemometrics and intelligent
laboratory systems, 39(1):43–62, 1997.

[112] Takafumi Taketomi, Hideaki Uchiyama, and Sei Ikeda. Visual slam al-
gorithms: a survey from 2010 to 2016. IPSJ Transactions on Computer
Vision and Applications, 9(1):1–11, 2017.

[113] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 30, 2016.

[114] Thomas J Walsh and Michael L Littman. Efficient learning of action
schemas and web-service descriptions. In AAAI, 2008.

[115] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey
of loss functions in machine learning. Annals of Data Science, 9(2):187–
212, 2022.

[116] Xuemei Wang. Planning while learning operators. In AAAI, 1996.

[117] Paul J Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[118] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi
Parikh, Manolis Savva, and Dhruv Batra. Dd-ppo: Learning near-perfect
pointgoal navigators from 2.5 billion frames. In International Conference
on Learning Representations, 2019.

[119] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. Learning to learn how to learn: Self-adaptive
visual navigation using meta-learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6750–
6759, 2019.

[120] Joseph Z. Xu and John E. Laird. Instance-based online learning of deter-
ministic relational action models. In AAAI, 2010.

122

CHAPTER 9. BIBLIOGRAPHY

[121] Joseph Z. Xu and John E. Laird. Combining learned discrete and contin-
uous action models. In AAAI, 2011.

[122] Joseph Zhen Ying Xu and John E. Laird. Learning integrated symbolic
and continuous action models for continuous domains. In AAAI, 2013.

[123] Li Yang and Abdallah Shami. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing, 415:295–316,
2020.

[124] Qiang Yang, Kangheng Wu, and Yunfei Jiang. Learning action models
from plan examples using weighted max-sat. Artificial Intelligence, 171
(2-3):107–143, 2007.

[125] Yuan Yang and Le Song. Learn to explain efficiently via neural logic
inductive learning. arXiv preprint arXiv:1910.02481, 2019.

[126] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks
and exploration enable objectnav. arXiv preprint arXiv:2104.04112, 2021.

[127] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jiten-
dra Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer
learning. 2018.

[128] Hankz Hankui Zhuo and Subbarao Kambhampati. Action-model acquisi-
tion from noisy plan traces. In IJCAI, 2013.

[129] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning
complex action models with quantifiers and logical implications. Artif.
Intell., 174(18):1540–1569, 2010.

123

	Introduction
	Background
	Classical Planning
	Solving Planning Problems
	Domain Examples

	Supervised Learning
	Artificial Neural Networks

	Reinforcement Learning

	Related work
	Perceptual Anchoring
	Action model learning
	Offline approaches
	Online approaches

	Planning in a latent space
	Planning by Deep Reinforcement Learning
	Model-free
	Model-based

	Symbolic Planning and Deep Reinforcement Learning

	Learning Planning Domains from Sensor Data
	The Plan-Act-Learn Problem
	Solving the PAL Problem
	Learning the Perception Function
	PAL example
	Experimental Analysis
	Benchmarks and simulators
	Experimental results

	Online Learning of Action Models
	Action Model Learning Problem
	OLAM Algorithm
	OLAM Example
	Termination, Correctness, and Integrity
	Experimental Analysis
	Evaluation on IPC domains
	Comparison with offline learning

	Online Grounding of Action Models
	The Ogamus Framework
	The Ogamus Algorithm
	Experimental Analysis
	Evaluating Ogamus
	Comparison on Object Goal Navigation
	Error Analysis

	Planning for Learning Object Properties
	Preliminaries and Problem Definition
	The Proposed Method
	Extended Planning Domain for Learning

	Experimental Analysis
	Experiments in Simulated Environments
	Real World Demonstrator

	Online Learning of Reusable Abstract Models for Object Goal Navigation
	Object Goal Navigation
	Method
	Abstract Model Reuse

	Experimental Analysis
	Implementation Details
	Reusing abstract models
	Effects of Knowledge Accumulation
	Semantic Maps and Abstract Models
	Limitations and Failure Analysis
	Qualitative examples

	Conclusions and Future Works
	Acknowledgements
	Bibliography

