This study provides a structured literature review of the recent COllaborative roBOT (COBOT) applications in industrial and service contexts. Several papers and research studies were selected and analyzed, observing the collaborative robot interactions, the control technologies and the market impact. This review focuses on stationary COBOTs that may guarantee flexible applications, resource efficiency, and worker safety from a fixed location. COBOTs offer new opportunities to develop and integrate control techniques, environmental recognition of time-variant object location, and user-friendly programming to interact safely with humans. Artificial Intelligence (AI) and machine learning systems enable and boost the COBOT's ability to perceive its surroundings. A deep analysis of different applications of COBOTs and their properties, from industrial assembly, material handling, service personal assistance, security and inspection, Medicare, and supernumerary tasks, was carried out. Among the observations, the analysis outlined the importance and the dependencies of the control interfaces, the intention recognition, the programming techniques, and virtual reality solutions. A market analysis of 195 models was developed, focusing on the physical characteristics and key features to demonstrate the relevance and growing interest in this field, highlighting the potential of COBOT adoption based on (i) degrees of freedom, (ii) reach and payload, (iii) accuracy, and (iv) energy consumption vs. tool center point velocity. Finally, a discussion on the advantages and limits is summarized, considering anthropomorphic robot applications for further investigations.

COBOT Applications—Recent Advances and Challenges

Taesi C.;Aggogeri F.;Pellegrini N.
2023-01-01

Abstract

This study provides a structured literature review of the recent COllaborative roBOT (COBOT) applications in industrial and service contexts. Several papers and research studies were selected and analyzed, observing the collaborative robot interactions, the control technologies and the market impact. This review focuses on stationary COBOTs that may guarantee flexible applications, resource efficiency, and worker safety from a fixed location. COBOTs offer new opportunities to develop and integrate control techniques, environmental recognition of time-variant object location, and user-friendly programming to interact safely with humans. Artificial Intelligence (AI) and machine learning systems enable and boost the COBOT's ability to perceive its surroundings. A deep analysis of different applications of COBOTs and their properties, from industrial assembly, material handling, service personal assistance, security and inspection, Medicare, and supernumerary tasks, was carried out. Among the observations, the analysis outlined the importance and the dependencies of the control interfaces, the intention recognition, the programming techniques, and virtual reality solutions. A market analysis of 195 models was developed, focusing on the physical characteristics and key features to demonstrate the relevance and growing interest in this field, highlighting the potential of COBOT adoption based on (i) degrees of freedom, (ii) reach and payload, (iii) accuracy, and (iv) energy consumption vs. tool center point velocity. Finally, a discussion on the advantages and limits is summarized, considering anthropomorphic robot applications for further investigations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/581406
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact