This paper discusses, in a multiclass classification setting, the issue of the choice of the so-called categorical classifier, which is the procedure or criterion that transforms the probabilities produced by a probabilistic classifier into a single category or class. The standard choice is the Bayes Classifier (BC), but it has some limits with rare classes. This paper studies the classification performance of the BC versus two alternatives, that are the Max Difference Classifier (MDC) and Max Ratio Classifier (MRC), through an extensive simulation and some case studies. The results show that both MDC and MRC are preferable to BC in a multiclass setting with imbalanced data.

Categorical classifiers in multiclass classification with imbalanced datasets

Carpita M.;Golia S.
2023-01-01

Abstract

This paper discusses, in a multiclass classification setting, the issue of the choice of the so-called categorical classifier, which is the procedure or criterion that transforms the probabilities produced by a probabilistic classifier into a single category or class. The standard choice is the Bayes Classifier (BC), but it has some limits with rare classes. This paper studies the classification performance of the BC versus two alternatives, that are the Max Difference Classifier (MDC) and Max Ratio Classifier (MRC), through an extensive simulation and some case studies. The results show that both MDC and MRC are preferable to BC in a multiclass setting with imbalanced data.
File in questo prodotto:
File Dimensione Formato  
Carpita Golia SADM 2023.pdf

accesso aperto

Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/578447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact