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Abstract
This paper discusses, in a multiclass classification setting, the issue of the choice
of the so-called categorical classifier, which is the procedure or criterion that
transforms the probabilities produced by a probabilistic classifier into a single
category or class. The standard choice is the Bayes Classifier (BC), but it has
some limits with rare classes. This paper studies the classification performance
of the BC versus two alternatives, that are the Max Difference Classifier (MDC)
and Max Ratio Classifier (MRC), through an extensive simulation and some case
studies. The results show that both MDC and MRC are preferable to BC in a
multiclass setting with imbalanced data.
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1 INTRODUCTION

The classification task is one of the most important issues
in real applications. In this paper, we focus on multiclass
target variables; that is, variables that admit k nonoverlap-
ping classes or categories and the units are to be classified
into one and only one of them. We can distinguish two
steps in the classification procedure. The first step is to
identify the so-called probabilistic classifier, which is a
suitable method that assigns a probability to all of the cat-
egories that can be assumed by the target variable. The
second step is to identify the so-called categorical classi-
fier, which is a procedure or criterion that transforms the
probabilities produced by the probabilistic classifier into a
single category or class.

There is a broad literature that discusses the problem
of how to find the best probabilistic classifier in both
the dichotomous and polytomous contexts. However, less

attention has been given to the choice of the criterion to
be used to pass from the probabilistic classifier to the pre-
dicted class (i.e., to the choice of the categorical classifier).

The standard method is the Bayes Classifier (BC),
which assigns a unit to the most likely class based on the
probabilistic classifier. This categorical classifier has the
advantage that it minimizes (on average) the test error rate
[18]. Consequently, it is the optimal criterion to use if one
is interested in the accuracy of the classification. BC favors
the prevalent class. However, this characteristic can be a
limit when the prevalent class is not the one of interest,
or the data are not balanced. There are many real-world
applications that are characterized by class imbalance (i.e.,
there are one or more classes that are under-represented in
the dataset and most of the time, these classes are the ones
of interest). In addition, there is a broad literature that has
discussed the binary case [14], where the class imbalance
problem was addressed through the following approaches:
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data level, algorithm level, cost-sensitive learning and
ensemble-based. The data level approach balances the
data by resampling methods; for example, under- and/or
over-sampling of one or more categories, such as the
well-known SMOTE [6]. The algorithm level approach
modifies the existing classifier learning algorithms to
bias the learning toward the minority class, whereas the
cost-sensitive learning approach incorporates approaches
at the data level, at the algorithmic level, or at both levels
jointly, considering higher misclassification costs for the
units belonging to the minority class. The last approach
is based on ensemble techniques (e.g., bagging or boost-
ing) and usually combines an ensemble learning algorithm
and one of the other approaches, specifically data level and
cost-sensitive approaches. Nevertheless, most of the tech-
niques that have been developed for the binary case are
not directly applicable to the multiple classes case, which
turns out to be a challenging issue. Some studies have
faced the class imbalance problem in the multiclass setting
by reducing the multiclass problem by banalization tech-
niques, such as One-vs-One (OVO) or One-vs-All (OVA)
schemes, or by following the four approaches developed
for the binary case (see, e.g., [13, 15, 25, 26]). The methods
that have been developed to answer the class imbalance
problem work as pre-processing techniques or at the prob-
abilistic classifier level, without taking into account the
role that the choice of the categorical classifier could have
in the final classification. In this paper, we work on the cat-
egorical classifier and we show that a suitable choice can
improve the classification.

In previous papers (see, e.g., [16, 17]), we have investi-
gated the performances of different categorical classifiers
(some of them have also taken the ordinal nature of the
target variable), and the Maximum Difference Classifier
(MDC) has been found to be promising. In this paper, we
use a simulation study and real applications to examine
the classification performance of BC, MDC, and a new
proposal, which we have denoted as the Maximum Ratio
Classifier (MRC). The last two classifiers are based on a
comparison between the predicted probabilities and the
sample frequencies. This paper shows that these sample
frequencies can be seen as the output of the null model.
So, the resulting two classifiers come from the comparison
of the “full” model (the probabilistic classifier) with the
null model. In this sense, we can say that they are based
on an index of performance following Cramer’s approach
[12] for the dichotomous case. However, this reasoning
cannot be applied to BC, which does not consider the null
model. The conclusions of this study will show that MDC
and MRC represent better alternatives to the BC when the
target variable has rare classes.

The rest of this paper is organized as follows. Section 2
introduces the definition of the three classifiers under

study. Section 3 recalls the measures used in the paper
to evaluate the classification performance of a classifier.
Meanwhile, Section 4 reports the description of a simula-
tion study. Section 5 shows the results on four real datasets.
Conclusions follow in Section 6.

2 THREE CATEGORICAL
CLASSIFIERS

In this section, we define the three classifiers for multiclass
classification problems, which are the object of our study.
Let the target variable Y be a categorical random variable
with k categories, Y ∈ {1, 2, … , k}, and let us assume that
there is the following relationship between the probabili-
ties of Y and a set of m predictors XT = [X1,X2, … ,Xm]:

P
𝑗
= P(Y = 𝑗|X) 𝑗 = 1, 2, … , k.

These conditional probabilities P
𝑗
, estimated with

a model using a random sample of n observations
{(yi, xi) ; i = 1, 2, … ,n}, can be collected into n vectors of
the type

̂P
T
i =

[
̂P1i, ̂P2i, … ,

̂Pki

]

i = 1, 2, … ,n

with ̂Pji ≥ 0 for all 𝑗 and 𝜾T̂Pi =
∑k
𝑗=1
̂Pji = 1, where 𝜾 is the

all-ones vector.
The estimated conditional probabilities of Y can be

expressed, for each observation yi, with the one-hot encod-
ing sample vector wi as follows:

Pr(yi) = wT
i
̂Pi =

k∑

𝑗=1
wjîPji =

k∏

𝑗=1

̂Pwji

ji i = 1, 2, … ,n (1)

where wT
i = [w1i,w2i, … ,wki] is, for yi = 𝑗, a vector of

k − 1 zeros and a 1 in the 𝑗th position (see [2],
Section 4.3.4).

If a generic w is considered, then instead of the
observed wi we can use the Pr(yi) in (1) as a probabilistic
classifier. The rule that maximizes (1) for each given ̂Pi is
the well-known Bayes Classifier (BC):

BC ∶ ŵi = arg max
w

Pr(yi)

= arg max
w

wT
̂Pi i = 1, 2, … ,n. (2)

Note that, for each ŵi, there is one in-sample predicted
category ŷi. Moreover, in the case of binary classification
(k = 2), the two estimated probabilities are ̂P1i and ̂P2i =
1 − ̂P1i, so that (2) is the standard criterion “if ̂P1i > 0.5
then ŷi = 1 else ŷi = 0”.

A useful interpretation of the BC rule (2) can be
obtained when parametric models are adopted. In this
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CARPITA and GOLIA 3

case, the estimated conditional probabilities P
𝑗
(̂𝜽) =

P(Y = 𝑗|x; ̂𝜽) depend on the vector of parameters 𝜽 that
are estimated with an optimization method. For statisti-
cal models, the maximum likelihood (ML) method finds
the maximum of the Log-Likelihood, which can be written
using (1), as follows:

LL(̂𝜽) =
n∑

i=1
log

[

Pr
(

yi|̂𝜽
)]

=
n∑

i=1

k∑

𝑗=1
wji log

[

Pji(̂𝜽)
]

=
n∑

i=1

k∑

𝑗=1
wji log

[

P
(

Yi = 𝑗|xi; ̂𝜽
)]

(3)

Equation (3) is an extension of the Log-Likelihood
defined for the binary case by Cramer [12] to the multiclass
case.

Let LL(y|̂𝜽) be the maximized Log-Likelihood (3)
defined as function of the vector yT = [y1, y2, … , yn];
applying the BC we choose y = ŷ, obtaining:

LL(ŷ|̂𝜽) = max
y

LL(y|̂𝜽). (4)

In other terms, with the (2) rule, the in-sample pre-
dicted categories are those with higher estimated condi-
tional probabilities, so that the BC is optimal in the sense
that, for given Pji(̂𝜽), it maximizes LL(y|̂𝜽), and hence
the fit ŷ to the given Pji(̂𝜽). Note that the Log-Likelihood
function has two uses: in the estimation step, LL(𝜽) is max-
imized with respect to probabilities (parameters) condi-
tionally to sample data; whereas in the classification step,
LL(y|̂𝜽) is maximized with respect to data conditionally to
the estimated probabilities.

The other two useful simple classification rules can be
obtained by comparing the estimated conditional probabil-
ities (1) with their benchmarks, which are the in-sample
relative frequencies observed for the k categories, fT =
[
f1, f2, … , fk

]
. These observed relative frequencies corre-

spond to the estimated unconditional probabilities of Y
obtained under the so-called null model. To this aim, we
define two indices of performance of the model for the n
observations:

PfR (yi) = Pr(yi) ∕wT
i f = wT

i

[
̂Pi∕f

]

=
k∑

𝑗=1
wji

(
̂Pji

f
𝑗

)

=
k∏

𝑗=1

(
̂Pji

f
𝑗

)wji

i = 1, 2, … ,n (5)

PfD (yi) = Pr(yi) −wT
i f = wT

i

[
̂Pi − f

]

=
k∑

𝑗=1
wji

(
̂Pji − f

𝑗

)

=
k∏

𝑗=1

(
̂Pji − f

𝑗

)wji
i = 1, 2, … ,n (6)

where the ratio of two vectors in (5) is defined
term-by-term. It is worth noting here that PfR (yi) is an
extension to the multiclass case of the index of perfor-
mance defined by Cramer [12] for the binary case. If a
generic w is used in (5) and (6) instead of the observed
wi, then we can use PfR (yi) and PfD (yi) as probabilistic
classifiers, respectively.

The rule that, for each given ̂Pi, maximizes (5), is
named the Maximum Ratio Classifier (MRC):

MRC ∶ ŵi = arg max
w

PfR (yi)

= arg max
w

= wT
[
̂Pi∕f

]

i = 1, 2, … ,n

(7)

whereas the rule that, for each given ̂Pi, maximizes (6), is
named the Maximum Difference Classifier (MDC):

MDC ∶ ŵi = arg max
w

PfD (yi)

= arg max
w

= wT
[
̂Pi − f

]

i = 1, 2, … ,n

(8)

Note that, for each ŵi, there is one in-sample predicted
category ŷi for both MRC and MDC, which are not neces-
sarily the same. For the binary case, the classification rule
(7) was proposed by Cramer [12], so MRC represents its
extension to the multiclass case. It is easy to verify that,
for binary classification, MRC and MDC always give the
same predicted category, so (7) and (8) are the Cramer cri-
terion “if ̂P1i > f1 then ŷi = 1 else ŷi = 0”. This is useful
in the case of unbalanced samples (see [12], Section 5.1).
However, MRC and MDC do not give the same results
when k > 2. For example, for k = 3 and sample frequencies
fT = [0.30,0.20,0.50], if the estimated probabilities are
̂P

T
= [0.15,0.25,0.60], then MDC gives ŷ = 3 (for this

example the same predicted category of BC), whereas MRC
gives ŷ = 2.

Both MRC and MDC, as BC, have a useful interpreta-
tion in the ML framework. If ̂Pji = Pji(̂𝜃) are the ML esti-
mates of the conditional probabilities and y is the observed
sample of Y , then by using (5) we obtain:

LR(̂𝜽) = 2
n∑

i=1
log

[

PfR

(

yi|̂𝜽
)]

= 2
[

LL(̂𝜽) − LL0

]

(9)

which is the classical Likelihood Ratio statistic to test the
significance of the model. LL(̂𝜽) is the Log-Likelihood of
the full model (with x) and LL0 the Log-Likelihood of the
null model (without x) (see [12] for the dichotomous case).

Let LR(y|̂𝜽) be the maximized Likelihood Ratio (9)
defined as function of the vector y; applying the MRC we
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4 CARPITA and GOLIA

choose y = ŷ, obtaining:

LR(ŷ|̂𝜽) = max
y

LR(y|̂𝜽). (10)

In other terms, with the (7) rule, the in-sample pre-
dicted categories are those with higher estimated con-
ditional probabilities in term of relative difference with
respect to the sample frequencies, so that the MRC is
optimal in the sense that, for given Pji(̂𝜽), it maximizes
LR(y|̂𝜽), and hence the fit ŷ to the given Pji(̂𝜽). Also note
in this case the two uses of the Likelihood Ratio func-
tion: first, in the estimation step LR(𝜽) is maximized with
respect to probabilities (parameters) conditionally to sam-
ple data; and second, in the classification step LR(y|̂𝜽)
is maximized with respect to data conditionally to the
estimated probabilities.

Finally, using (6) we define:

LD(̂𝜽) =
n∏

i=1
PfD

(

yi|̂𝜽
)

= L(̂𝜽) − L0 (11)

with L(̂𝜽) = exp[LL(̂𝜽)] and L0 = exp(LL0); (11) is the Like-
lihood Difference statistic between the full and the null
models. Let LD(y|̂𝜽) be the maximized Likelihood Differ-
ence (11) defined as function of the vector y; applying the
MDC we choose y = ŷ, obtaining:

LD(ŷ|̂𝜽) = max
y

LD(y|̂𝜽). (12)

In other terms, with the (8) rule, the in-sample pre-
dicted categories are those with higher estimated con-
ditional probabilities in term of absolute difference with
respect to the sample frequencies, so that the MDC is
optimal in the sense that, for given Pji(̂𝜽), it maximizes
LD(y|̂𝜽), and hence the fit ŷ to the given Pji(̂𝜽). Again, note
the two uses of the Likelihood Difference function: first,
in the estimation step, LD(𝜽) is maximized with respect
to probabilities (parameters) conditionally to sample data;
and second, in the classification step, LD(y|̂𝜽) is maxi-
mized with respect to data conditionally to the estimated
probabilities.

3 MEASURES TO EVALUATE
PERFORMANCE OF A CLASSIFIER

When the task is to evaluate the predictive performance of
a classifier, it is generally a good rule to consider several
indices that give a wide comprehension of the behavior of
the classifier. For example, the simple percentage of correct
predictions gives a limited view of the predictive ability of

a classifier, especially when the classes are not balanced
(i.e., when one or more classes are under-represented in
the dataset). Following [22], in addition to the overall accu-
racy, in this paper we will use the per-class precision, recall
and F1-score, and their macroaverage version, used in the
multiclass setting.

In a multiclass classification problem with k > 2
classes, the k × k confusion matrix can be reduced to
k 2 × 2 confusion matrices, one for each class label
𝑗 = 1, 2, … , k.

The per-class Precision (Pre
𝑗
), Recall (Rec

𝑗
), and

F1-score (F1
𝑗
) can be calculated as follows:

Pre
𝑗
=

tp
𝑗

tp
𝑗

+ fp
𝑗

Rec
𝑗
=

tp
𝑗

tp
𝑗

+ fn
𝑗

F1
𝑗
= 2 ×

Pre
𝑗
× Rec

𝑗

Pre
𝑗
+ Rec

𝑗

,

where tp
𝑗

, fp
𝑗

, fn
𝑗

, and tn
𝑗

are the number of true pos-
itives, false positives, false negatives, and true negatives
for the 𝑗th class. Precision quantifies the class agreement
of the data labels with the positive labels given by the
classifier, whereas recall quantifies the effectiveness of the
classifier in identifying positive labels. The F1-score is
used to integrate recall and precision into a single met-
ric by means of their harmonic mean. Two strategies can
be applied to summarize the k values of these indices:
macroaveraging, which is obtained by taking the arith-
metic mean of the per-class indices; and micro-averaging,
which is obtained by summing the counts to get cumula-
tive tp, fn, tn, and fp and then calculating a performance
measure. Macroaveraging treats all classes equally, while
micro-averaging favors larger classes [22]. In this paper, we
will use macroaverage precision (Macro Pre), recall (Macro
Rec) and F1-score (Macro F1) because we do not want to
discriminate less frequent classes. For Macro F1, we stress
that the used formula is the arithmetic mean over indi-
vidual F1-scores and not the harmonic mean of Macro
Pre and Macro Rec, as introduced in [22]. There is some
evidence to show that the second formula overly favors
heavily biased classifiers and can yield misleadingly high
evaluation scores [20].

The overall accuracy (OvAc) is the rate of correct clas-
sification, which is defined as:

OvAc = 1
n

k∑

𝑗=1
tp
𝑗

where n is the total number of cases. OvAc is equal to
Micro Precision, Micro Recall and Micro F1 measures and
it is maximized by BC.
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CARPITA and GOLIA 5

It can also be of interest to compare the per-class
indices of the classes computing their difference in abso-
lute value. A useful indicator of these differences is
their maximum, which is denoted as Maximum Distance
Between Indices (MDB Ind), where Ind=Pre, Rec and F1,
and is defined as:

MDB Ind = max
𝑗≠s

∣ Ind
𝑗
− Inds ∣ .

The lower the MDB Ind, the better the classification.

4 SIMULATION STUDY

We used the Dirichlet random variable (r.v.) to simulate the
probability distribution of a nominal variable with k cate-
gories. This r.v. is parameterized by a vector 𝜶 of k positive
real numbers and is a multivariate generalization of the
Beta r.v. The appealing characteristic of the Dirichlet r.v.
D = {D1,D2, … ,Dk} for the present context is that a sin-
gle realization is composed of k values d

𝑗
such that each

d
𝑗
∈ (0, 1) and

∑k
𝑗=1d

𝑗
= 1, so it can be seen as the prob-

ability mass function of a k-variate discrete r.v., which is
the so-called “target variable.” Moreover, there is a link
between the alpha parameters and the expected value of
the marginals; that is, E

(
D
𝑗

)
= 𝛼

𝑗
∕
∑k
𝑗=1𝛼𝑗 . This allows us

to control the form of the probability mass function of
this target variable controlling the expected value of the
marginals.

In our simulation, each realization of a given Dirichlet
r.v. had a double use. First, it was seen as the probabil-
ity mass function of a k-variate discrete r.v. and used to
randomly extract a realization from it that represented
the actual (observed) class of the target variable. At the
same time, it was considered as the output of a prob-
abilistic classifier for the target variable and was used
in producing the classification following the three cate-
gorical classifiers defined in Section 2. This simulation
scheme avoids the specification of a statistical model for
data generation. Consequently, the results will be general
and not linked to a specific model. Nevertheless, it prevents
out-of-sample prediction, so the predictive performances
will be in-sample.

The structure of the simulation setting is as follows. For
each set of 𝜶 = (𝛼1, 𝛼2, … , 𝛼k), we extracted 5000 realiza-
tions of the corresponding Dirichlet r.v. The choice of this
sample size refers to the fact that a high sample size allows
us to investigate the performance of the analyzed cate-
gorical classifiers in a less problematic framework, given
that they are working in the context of large samples. The
observed class was generated from the 5000 realizations.
Then, the BC, MDC, and MRC were applied to produce the

predicted class, and the performance measures described
in Section 3 were calculated. This scheme was repeated
1000 times and the mean values of the indicators and their
standard deviations were recorded.

To consider a variety of situations and manage the
imbalance complexity, we left the task to control the choice
of the alphas 𝜶 to the imbalance ratio (IR) [21], remem-
bering that each 𝛼

𝑗
is obtained as 𝛼

𝑗
= E

(
D
𝑗

)
×
∑k
𝑗=1𝛼𝑗 ,

where, in our simulation, E
(

D
𝑗

)
= f

𝑗
, the frequency of

class 𝑗. The IR is defined as the ratio of the frequencies of
the majority and the minority class, that is

IR =
fmax

fmin

and it can be used to quantify the degree of imbalance [15].
Moreover, given that, with the same IR, there can be

different configurations of the probability mass function of
the target variable, we have considered the mean imbal-
ance ratio (MIR), which is obtained as

MIR = 1
k

k∑

𝑗=1

fmax

f
𝑗

.

The higher the MIR, the more cmax, the class with fmax
as frequency, absorbs units and the dataset is imbalanced.

The sequence of numbers from 1.5 to 13.5 with the
increment of 0.5 composes the set of selected IRs. For each
IR, we considered five different and increasing values of
MIR, labeled as MIR 1, … , MIR 5; Table 1 reports the
range of these five MIR with respect to the 25 IRs.

Moreover, we fixed the sum of the 𝛼
𝑗

equal to 20.
This choice does not have an impact on the simulation
results. The choice of particular values for the alphas is
not a sensitive issue. A preliminary analysis that applied
a linear transformation to the set of alphas has shown
that the characteristics of the probability mass function of
the target variable simulated with the multivariate Dirich-
let before and after the transformation remain almost
unchanged.

Operationally, the simulations were made using the
R open source software and the R package rminer [9]
was used to calculate most of the predictive performance
indices.

4.1 The balanced case

First, we have investigated if the three classifiers defined
in Section 2 have the same performance in the balanced
case, which were obtained by imposing the same value to
all of the 𝛼

𝑗
; that is, 𝛼

𝑗
= 6.667, 𝛼

𝑗
= 1.5 and 𝛼

𝑗
= 5 for

the case of the three, four and five classes respectively.
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6 CARPITA and GOLIA

T A B L E 1 Range of MIR (mean imbalance ratio) by number of classes.

MIR 1 MIR 2 MIR 3 MIR 4 MIR 5

3 classes 1.235–4.667 1.261–5.213 1.287–5.268 1.314–5.331 1.340–5.399

4 classes 1.130–4.468 1.201–4.515 1.229–4.917 1.294–5.640 1.300–6.711

5 classes 1.176–3.895 1.193–4.570 1.223–5.249 1.241–5.627 1.284–6.563

T A B L E 2 Macroaveraged and OvAc indices for the balanced cases.

3 classes 4 classes 5 classes

BC MDC MRC BC MDC MRC BC MDC MRC

Macro Pre 0.445 0.445 0.445 0.473 0.473 0.473 0.311 0.312 0.312

Macro Rec 0.445 0.444 0.444 0.473 0.473 0.473 0.311 0.310 0.310

Macro F1 0.445 0.442 0.441 0.473 0.473 0.472 0.311 0.308 0.306

OvAc 0.445 0.442 0.442 0.473 0.473 0.473 0.311 0.308 0.307

Table 2 reports the mean value, over 1000 replications,
of the macroaveraged indices and OvAc defined in
Section 3.

When all of the classes are equally represented, the
three categorical classifiers perform in the same way.

4.2 Imbalanced case: three classes

The first simulation for the imbalanced case concerns the
three classes case. The three values 𝛼

𝑗
were chosen as fol-

lows. For a given IR, we generated the frequency of the first
class f1 from a continuous uniform distribution U(0.4,0.6).
This class is the one with the highest frequency (fmax).
The frequency of the second class, f2, was obtained as
f2 = f1∕IR and this is the class with the lowest frequency
(fmin). The frequency of the third class was obtained as
f3 = 1 − (f1 + f2). The resulting triplet was considered only
if f2 < f3. The MIR was then calculated. This procedure was
repeated a large number of times, obtaining a set of feasi-
ble triplets with their MIR. Afterward, we selected the five
final triplets according to their MIR equal to its minimum,
first, second and third quartile and maximum. Then, the 𝛼

𝑗

were computed as 𝛼
𝑗
= f

𝑗
× 20, with 20 =

∑k
𝑗=1𝛼𝑗 . Table 1

reports the range of these five MIR with respect to the 25
IRs.

Figure 1 shows the mean value, over 1000 replications,
of the OvAc and the macroaveraged indices of the three
classifiers by MIRs and IRs;○ identifies BC, 𝛥MDC and+
MRC. The plots of the corresponding standard deviations
are reported in the appendix (Figure A1).

We can observe the following behavior for all of the
combinations of IR and MIR. OvAc for BC is always

higher than the corresponding values for MDC and MRC,
even if its standard deviations are higher. This behavior
does not surprise us because BC favors the class with
the highest frequency, which is better predicted. The
BC’s Macro Pre also appears to be higher, nevertheless
the associate standard deviations show increasing val-
ues. This can be explained by the presence, for most of
the combinations of IR and MIR, of a multimodal dis-
tribution of the index along the 1000 replications. In
contrast, the competitor classifiers MDC and MRC have
higher values for Macro Rec and Macro F1 because, even
if they lose power in predicting the most frequent class,
they gain more power in predicting the rare class and
these two indices are sensible to the predictive ability of
all of the classes. Now, let us consider the behavior of
BC’s Macro F1 for low values of MIR (MIR 1 and 2). It
can be observed that there is a decrease in the index for
small values of IR and a recovery for higher values of
IR. This is related to the shape of the triplets of the fre-
quencies, which depends on the simulation setting; as IR
increases, fmin obviously decreases and for small MIR, this
causes the remaining two frequencies to be almost the
same (e.g., MIR 1: IR= 5 with fT = [0.455,0.091,0.454],
IR= 11.50 with fT = [0.479,0.042,0.479]; MIR 2:
IR= 5 with fT = [0.488,0.098,0.415], IR= 11.50 with
fT = [0.509,0.044,0.446]).

By comparing the performances of MDC and MRC, it
is possible to observe that MDC has in general higher val-
ues for OvAc and Macro F1, whereas the two classifiers
have a comparable Macro Pre and Macro Rec for low val-
ues of IR. When IR increases, Macro Rec tends to be higher
for MRC, whereas MDC’s Macro Pre is slightly higher than
that of MRC.
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CARPITA and GOLIA 7

F I G U R E 1 Simulation results for three classes: mean values of OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR for the three
classifiers (BC=○; MDC=𝛥; MRC=+).

4.3 Imbalanced case: four and five
classes

The simulation procedure with k equal to 4 and 5 is sim-
ilar but more complex than in the previous case with
k = 3. The five values 𝛼

𝑗
of a Dirichlet with five compo-

nents were chosen as follows. We generated five num-
bers from as many Beta distributions; that is, Beta(1, 5),
Beta(1, 5), Beta(2, 5), Beta(3, 5) and Beta(5, 5). Figure 2
shows their probability density function. The median of
these r.v. is equal, respectively, to 0.125, 0.263, 0.364 and
0.500. As the first parameter increases, the distribution
becomes less skewed.

Given that the record of these five numbers, trans-
formed so that they sum to one, represents the proba-
bility mass function of a five-class categorical variable,
and given that we want to simulate imbalanced data,
we need to have two small probabilities, one high prob-
ability and the remaining two probabilities in between.
The choice of the particular values of the Beta param-
eters used in the simulation is related to this simula-
tion scheme. The IR and MIR were then calculated. This
procedure was repeated a large number of times. After-
ward, for each of the 25 IR considered in the study,
we selected the five final sets of frequencies accord-
ing to their MIR equal to its minimum, first, second
and third quartile and maximum. Then, the 𝛼

𝑗
were

computed as 𝛼
𝑗
= f

𝑗
× 20, with 20 =

∑k
𝑗=1𝛼𝑗 . Table 1

reports the range of these five MIR with respect to the
25 IRs.

The four values 𝛼
𝑗

of a Dirichlet for the case with k = 4
classes were chosen as just explained, while removing one
of the two Beta(1, 5).

Figures 3 and 4 show the mean value, over 1000 repli-
cations, of the OvAc and the macroaveraged indices of
the three classifiers by MIRs and IRs; ○ identifies BC, 𝛥
MDC and + MRC. The plots of the corresponding stan-
dard deviations are reported in the appendix (Figures A2
and A3).

When analyzing these two figures, we can observe that
the relations between the three classifiers, previously high-
lighted in Section 4.2, are valid even if the number of the
classes is four or five. Again, the higher values of Macro
Pre for BC are associated with high standard deviations,
which for most of the combinations of IR and MIR can be
explained by the presence of a multimodal distribution of
the index along the 1000 replications.

The sawtooth behavior of the indices for high val-
ues of MIR and IR, which is clearly evident for BC, is
related to the similarity of the results in presence of
similar configurations of the set of frequencies (e.g.,
four classes and MIR 4: Configuration 1) IR= 9.50
with fT = [0.048,0.077,0.423,0.452] and IR= 10.50 with
fT = [0.043,0.063,0.437,0.456] versus Configuration 2
IR= 10 with fT = [0.059,0.154,0.199,0.588] and IR= 11
with fT = [0.055,0.122,0.214,0.609]). It is interesting to
observe that low values of BC’s Macro F1 correspond to
high values of BC’s OvAc. This occurs when there is one
frequency that absorbs more of the 50% of the units, as in
Configuration 2 in the four classes example.
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8 CARPITA and GOLIA

F I G U R E 2 Probability density function of the Beta r.v. used in the simulation.

F I G U R E 3 Simulation results for four classes: mean values of OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR for the three
classifiers (BC=○; MDC=𝛥; MRC=+).

Moreover, we can observe that the performance indices
of MCD and MRC, in contrast to those of BC, are more
stable as the imbalance between the classes increases.

5 CASE STUDIES

In this section, we will discuss the results of the appli-
cation of the three classifiers, BC, MDC, and MRC, to
some case studies. When the data needed a probabilis-
tic classifier first, and the categories were ordered, we
used the Cumulative Logit Model (CLM) [1] to study

and predict the occurrence probabilities of each cate-
gory. Although this choice for the probabilistic classifier
might not be the best for the analyzed cases, our atten-
tion is focused on the performance of different categorical
classifiers more than on the performance of the prob-
abilistic classifier. Only for the dataset with the largest
sample size we will consider the XGBoost [7] as an alter-
native probabilistic classifier. This probabilistic classifier
belongs to the ensemble-based approach to dealing with
the class imbalance problem and has proven itself to be
a good choice between the available boosting ensemble
algorithms [25].
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CARPITA and GOLIA 9

F I G U R E 4 Simulation results for five classes: mean values of OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR for the three
classifiers (BC=○; MDC=𝛥; MRC=+).

CLM is defined as follows: let Y be a categorical tar-
get variable with k ordinal categories {1, 2, … , k}, and let
{X1, … ,Xm} be a set of m explanatory variables; for the
statistical unit i, the CLM has the following form:

logit [P (Yi ≤ 𝑗)] = log P (Yi ≤ 𝑗)
1 − P (Yi ≤ 𝑗)

= 𝛽0𝑗 +
m∑

s=1
𝛽sxis, for 𝑗 = 1, 2, … , k − 1.

Once the parameters have been estimated, it is possible
to use the model for predictive purposes, so the CLM
gives the k predicted probabilities that are passed to the
categorical classifier.

To evaluate the out-of-sample predictive performance
of the three classifiers, we conducted a stratified five-
fold cross-validation. The stratified k-fold cross-validation
method [3, 27] builds each fold in such a way that the
class proportion of the feature of interest inside the fold is
approximately the same as in the original dataset, so each
fold is a good representative of the entire original dataset.
This implies that there is almost the same class proportion
of the original dataset in both the training and test sets, and
this is recommended in the presence of imbalanced data.

The first real dataset under study regards the predic-
tion of the result of a soccer match. In this context, the
target variable is the result obtained by the home team
and it has three categories: loss (Class 1), draw (Class 2)
and win (Class 3) of the home team. This variable has an
ordinal nature (loss ≺ draw ≺ win) and therefore can be

seen as an ordinal variable, even if the three categorical
classifiers considered do not require an ordering in the cat-
egories. The dataset comes from the Kaggle European Soc-
cer database (KES) [4] and comprises the decimal betting
odds on the matches, provided by 10 betting companies,
and the results of the corresponding matches. These 10
odds were averaged and transformed into probabilities of
loss, draw and win [23, 24]. The focus was on the matches
played in the Italian League Serie A during the seasons
from 2008/2009 to 2015/2016.

The second dataset concerns the sensorial quality of
the white and red variants of the Portuguese “Vinho
Verde” wine [10]. The data are available at the UCI
Machine Learning Repository [11]. The dataset comprises
11 of the most common physicochemical variables and a
sensory preference variable that measures the sensorial
quality of the wine, which is the target variable. This sen-
sory preference variable was obtained from the evaluations
of experienced judges who scored the wines, using a 0–10
scale, with 0 meaning very bad and 10 excellent, although
not all of the possible scores were used by the judges (red
wines: 3–8; white wines: 3–9). Moreover, the lowest and
highest sensory preferences had very low frequency (red
wines: 0.63% and 1.13%; white wines: 0.41% and 0.10%),
causing extremely high IR (red wines: 68.1; white wines:
439.6) and MIR (red wines: 20.71; white wines: 82.93).
Consequently, we decided to merge scores 3–4 and 7–8 for
red wines and scores 3–4 and 8–9 for white wines, obtain-
ing new target variables on a four-category (red wines) and
five-category (white wines) ordinal scale.
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10 CARPITA and GOLIA

T A B L E 3 Observed frequencies of the four target variables, sample sizes (n), number of explanatory variables (m), IR and MIR indices.

Class

Data set 1 2 3 4 5 n m IR MIR

Soccer results 0.270 0.260 0.470 - - 3014 - 1.808 1.516

Red wines 0.039 0.426 0.399 0.135 - 1599 11 10.923 4.037

White wines 0.037 0.297 0.449 0.180 0.037 4898 11 12.135 5.855

Heart disease 0.593 0.182 0.118 0.118 0.044 297 13 13.477 5.557

T A B L E 4 Classifier performance indices (macroaveraged Pre, Rec and F1, OvAc and W.Kappa) for the real case studies.

Soccer results Red wines White wines Heart disease

BC MDC MRC BC MDC MRC BC MDC MRC BC MDC MRC

Macro Pre 0.526 0.461 0.465 0.446 0.475 0.401 0.411 0.371 0.304 0.423 0.429 0.401

Macro Rec 0.454 0.471 0.474 0.412 0.444 0.477 0.298 0.337 0.384 0.382 0.412 0.420

Macro F1 0.399 0.460 0.462 0.417 0.442 0.387 0.298 0.323 0.296 0.380 0.410 0.396

OvAc 0.535 0.484 0.481 0.592 0.574 0.420 0.518 0.487 0.349 0.626 0.598 0.560

W.Kappa 0.309 0.326 0.331 0.510 0.528 0.516 0.405 0.468 0.473 0.706 0.730 0.713

The third dataset, denoted as the Cleveland Dataset, is
a part of the wide Heart Disease Dataset, which is avail-
able at the UCI Machine Learning Repository [19] and
refers to the data obtained from the V.A. Medical Center,
Long Beach and Cleveland Clinic Foundation. The aim is
to study and predict the presence of heart disease patients.
The target variable is the diagnosis of heart disease (angio-
graphic disease status), which assumes five categories
from 0 (no presence) to 4. The Heart Disease Dataset con-
tains 76 attributes. In this study, we used a subset of 13 that
were used in published papers on the subject.

Table 3 reports, for the four target variables, the
observed class frequencies, the sample sizes n, the number
of explanatory variables m, the IR and the MIR.

The soccer dataset has a class (win) that absorbs the
47% of the results, whereas the other two equally subdi-
vide the remaining 53%; here there is no rare class but the
data are still imbalanced. The other datasets have one (red
wines and heart disease) or two (white wines) rare classes
with a frequency lower than 5%, and this explains the high
value of IR.

Table 4 reports the value of the macroaveraged
indices and OvAc computed on the base of the stratified
cross-validation prediction of the target variables of all
of the available units (matches, wines and patients). The
per-class Precision, Recall and F1-score plus the MDB
indices are reported in the appendix (Table A1). Moreover,
given that all of the target variables are on an ordinal scale,

we have also computed the Cohen’s Weighted Kappa
index (W.Kappa) [8] to take into account a different cost
in the miss-classification. The weights that we used are
quadratic.

Let us consider the soccer dataset. It is well-known that
the draw is the most difficult result to predict [5]. This also
happens in this dataset: the draw (Class 2) has the lowest
recall between the three results. Nevertheless, even if BC
has almost no power to correctly predict it (Rec2 = 1.9%),
the other two classifiers gain a certain power. In fact, Rec2
for MDC and MRC is 15 and 16 times higher than the Rec2
of BC. OvAc and Macro Prec are higher for BC but BC is
outperformed by both MDC and MRC in terms of Macro
Rec, Macro F1 and W.Kappa. Apart from OvAc, which is
slightly lower, MRC outperforms MDC. We can conclude
from this that overall MRC seems to be the best categorical
classifier for this dataset.

Regarding the red wines and heart disease datasets, we
can observe that MRC has a relatively good power in cor-
rectly predicting the rare classes (Rec between 0.415 and
0.444), unlike BC, which has no predictive power at all or
low predictive power, and MDC, which has low predictive
power but higher than the one of BC. When there is only
one rare class (red wines and heart disease), MDC has the
highest Macro Pre, Macro F1 and W.Kappa, OvAc slightly
lower than the BC’s OvAc and Macro Rec lower than the
MRC’s Macro Rec but higher than the BC’s Macro Rec.
We can conclude from this that MDC seems to be overall
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CARPITA and GOLIA 11

T A B L E 5 Classifier performance indices (macroaveraged
Pre, Rec and F1, OvAc and W.Kappa) for the White Wines
estimated using XGBoost.

BC MDC MRC

Macro Pre 0.395 0.370 0.363

Macro Rec 0.331 0.352 0.389

Macro F1 0.343 0.358 0.371

OvAc 0.507 0.494 0.474

W.Kappa 0.464 0.473 0.486

the best categorical classifier for both red wines and heart
disease datasets.

Let us consider the white wines dataset, for which the
XGBoost was used as an alternative probabilistic classifier.
Table 5 reports the value of the Macroaveraged indices,
OvAc and W.Kappa.

By comparing the values of the indices reported in
Tables 4 and 5, it can be observed that all of the values are
higher for both the MDC and MRC when the XGBoost is
considered, whereas for BC Macro Pre and OvAc are lower
than those obtained by CLM. Without going into the ques-
tion of the choice of the best model, we can observe that the
comments concerning the comparison between BC and its
two competitors that arise from Table 4 continue to be valid
if Table 5 is instead evaluated. In fact, apart from OvAc
and Macro Pre, the other indices are higher when com-
puted by applying MDC or MRC instead of BC, so both
are preferable. The use of XGBoost seems to have an effect
on the performance of MRC when compared with MDC.
The reduction in OvAc using MRC instead of MDC passes
from 28.34% for CLM to 4.05% for XGBoost and MRC’s
Macro F1 becomes higher than MDC’s Macro F1. Overall,
considering CLM, MDC seems to be the best categorical
classifier for the white wines dataset; whereas, considering
XGBoost, MRC seems the preferable.

6 CONCLUSIONS

This paper has examined the issue of choice of the
so-called categorical classifier in a multiclass classifica-
tion setting, the procedure or criterion that transforms
the probabilities produced by a probabilistic classifier into
a single category or class. Although BC is the standard
choice, it has some limits with rare classes. Therefore, two
alternative classifiers, MDC and MRC, based on compar-
ing the predicted probabilities and the sample frequencies,
were proposed. They have interesting characteristics, as
they do not need the specification of a misclassification
cost function to be minimized, or a balancing of the rare
classes. Moreover, if a parametric model is used, they

have a useful interpretation in the maximum likelihood
framework.

First, we performed a broad simulation study involv-
ing target variables with three, four and five classes and
a high sample size (5000) to investigate the performance
of the analyzed categorical classifiers in a less problem-
atic framework. The main findings from the simulation
study are as follows. When all the categories are equally
represented, as in the balanced case, the three categori-
cal classifiers perform in the same way. In the imbalance
cases, regardless of the number of classes of the target vari-
able and for all combinations of IR and MIR, OvAc for BC
is always higher than the corresponding values for MDC
and MRC, whereas MDC and MRC have higher values for
Macro Rec and Macro F1. BC’s Macro Pre also appears to
be higher. Nevertheless, the associated standard deviations
show increasing values, which for most of the combina-
tions of IR and MIR can be explained by the presence
of a multimodal distribution of the index along the 1000
replications.

When the number of classes are four or five, the per-
formance indices of MCD and MRC (in contrast to those of
BC) are more stable as the imbalance between the classes
increases. Finally, when comparing the performance of
MDC and MRC, MDC has in general higher values for
OvAc and Macro F1, whereas the two classifiers have a
comparable Macro Pre and Macro Rec for low values of
IR. When IR increases, Macro Rec tends to be higher for
MRC, whereas MDC’s Macro Pre is slightly higher than
that of MRC.

In summary, the simulation studies reveal that both
MDC and MRC are preferable to BC in a multiclass set-
ting with imbalanced data. As pointed out in Section 4,
the simulation scheme leads us to the evaluation of
the performance of in-sample predictions that could
be too optimistic. Nevertheless, we are interested in
comparing the three categorical classifiers, rather than
evaluating the performance of different models. Moreover,
the results concerning the four case studies are based
on out-of-sample predictions and confirm what emerged
from the simulation.

From the analysis of the white wine dataset, for which
we have used two alternative probabilistic classifiers, it
seems that the choice of the probabilistic classifier can
mostly affect the performance of MRC and MDC, improv-
ing all the indices. This could suggest that the choice of
a probabilistic classifier could be an issue which matters.
Although it is clear that our observations are limited to
one real dataset and two models, this finding deserves
further and closer analysis. This will be part of a future
development of this paper.

A second issue of interest is the role played by the sam-
ple size on the simulation results. Now, given the type of
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12 CARPITA and GOLIA

simulation scheme, which does not involve the estimation
of a model first to get the estimated probability mass func-
tion of the target variable, we expect that the sample size
will not have a great impact on the performance of the
categorical classifiers. Some preliminary simulations with
smaller sample sizes and the results from the case studies,
which have a sample size lower than or equal to the one
used in the simulation (n = 297, 1599, 3014, 4898), seem to
support this expectation. A future wider simulation study
will investigate this aspect.

Finally, we would like to discuss our choice of the val-
ues of IR, limiting them to the 1.5–13.5 range and exclud-
ing larger values. This paper contains the proposal of two
new categorical classifiers, therefore we thought it would
be worth testing them under realistic, but not extreme con-
ditions. As a matter of fact, conditions in which the ratio
of the smallest to the largest class reaches 1 to 100 or even
more, are extreme conditions, which appear in particular
and specific contexts such as, for example, fraud detection.
This issue surely deserves further analysis which will be
part of a future development of this paper.
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APPENDIX A

See Figures A1–A3 and Table A1.

F I G U R E A1 Simulation results for three classes: standard deviation for OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR
for the three classifiers (BC=○; MDC=𝛥; MRC=+).
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F I G U R E A2 Simulation results for four classes: standard deviation for OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR for
the three classifiers (BC=○; MDC=𝛥; MRC=+).

F I G U R E A3 Simulation results for five classes: standard deviation for OvAc and Macroaveraged Pre, Rec and F1 by IR and MIR for
the three classifiers (BC=○; MDC=𝛥; MRC=+).
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T A B L E A1 Classifier performance indices (per-class Pre, Rec and F1, and MDB) for the real case studies.

Soccer results Red wines White wines Heart disease

BC MDC MRC BC MDC MRC BC MDC MRC BC MDC MRC

Pre1 0.489 0.439 0.439 0.000 0.250 0.083 0.545 0.317 0.116 0.813 0.891 0.906

Pre2 0.536 0.312 0.311 0.648 0.652 0.595 0.545 0.513 0.441 0.322 0.332 0.318

Pre3 0.552 0.632 0.646 0.532 0.528 0.518 0.516 0.543 0.549 0.254 0.224 0.224

Pre4 - - - 0.603 0.471 0.409 0.446 0.372 0.304 0.336 0.338 0.363

Pre5 - - - - - - 0.000 0.111 0.111 0.391 0.361 0.197

Rec1 0.491 0.604 0.604 0.000 0.048 0.444 0.033 0.071 0.470 0.934 0.805 0.744

Rec2 0.019 0.282 0.309 0.724 0.700 0.351 0.499 0.671 0.391 0.289 0.485 0.478

Rec3 0.852 0.528 0.507 0.600 0.511 0.386 0.727 0.431 0.328 0.091 0.137 0.206

Rec4 - - - 0.323 0.516 0.728 0.232 0.506 0.285 0.457 0.434 0.257

Rec5 - - - - - - 0.000 0.006 0.444 0.138 0.200 0.415

F11 0.490 0.508 0.508 0.000 0.080 0.140 0.062 0.116 0.186 0.869 0.846 0.817

F12 0.036 0.296 0.310 0.684 0.675 0.441 0.521 0.581 0.415 0.305 0.395 0.382

F13 0.670 0.575 0.568 0.564 0.520 0.442 0.604 0.480 0.411 0.134 0.170 0.214

F14 - - - 0.420 0.492 0.524 0.305 0.429 0.294 0.387 0.380 0.301

F15 - - - - - - 0.000 0.011 0.177 0.205 0.257 0.267

MDB Pre 0.063 0.320 0.335 0.648 0.402 0.511 0.545 0.432 0.438 0.559 0.666 0.709

MDB Rec 0.833 0.323 0.295 0.724 0.653 0.377 0.727 0.666 0.185 0.842 0.668 0.538

MDB F1 0.634 0.279 0.258 0.684 0.595 0.384 0.604 0.571 0.237 0.735 0.675 0.602
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