The V-groove joint of thick wall intersecting pipes must be filled by multi-layer weld. The welding path of intersecting pipes is complicated, and hence multi-layer welds increase the complexity of the problem. This paper proposes a methodology for path planning of multi-layer weld of thick wall intersecting pipes. The methodology is based on measuring the electrode pose located in both side and front views of intersecting pipes. In order to compensate for the path deviation around the pipe circumference, the measured values are used to interpolate the path of each pass between two views. The methodology has been applied in a case study. Simulation results approve that multi-layer weld appropriately fills the V-groove joint space around the pipe circumference. In addition, collision avoidance between welding torch and pipes is considered by introducing a safety ring. While the robot wrist moves inside the safety ring, no collision occurs. Simulation results show the robustness of the proposed path planning method, introduced for collision avoidance.
Path Planning Methodology for Multi-Layer Welding of Intersecting Pipes Considering Collision Avoidance
Beschi, M;
2021-01-01
Abstract
The V-groove joint of thick wall intersecting pipes must be filled by multi-layer weld. The welding path of intersecting pipes is complicated, and hence multi-layer welds increase the complexity of the problem. This paper proposes a methodology for path planning of multi-layer weld of thick wall intersecting pipes. The methodology is based on measuring the electrode pose located in both side and front views of intersecting pipes. In order to compensate for the path deviation around the pipe circumference, the measured values are used to interpolate the path of each pass between two views. The methodology has been applied in a case study. Simulation results approve that multi-layer weld appropriately fills the V-groove joint space around the pipe circumference. In addition, collision avoidance between welding torch and pipes is considered by introducing a safety ring. While the robot wrist moves inside the safety ring, no collision occurs. Simulation results show the robustness of the proposed path planning method, introduced for collision avoidance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.