Purpose: We tested the vagal withdrawal concept for heart rate (HR) and cardiac output (CO) kinetics upon moderate exercise onset, by analysing the effects of vagal blockade on cardiovascular kinetics in humans. We hypothesized that, under atropine, the φ1 amplitude (A1) for HR would reduce to nil, whereas the A1 for CO would still be positive, due to the sudden increase in stroke volume (SV) at exercise onset. Methods: On nine young non-smoking men, during 0–80 W exercise transients of 5-min duration on the cycle ergometer, preceded by 5-min rest, we continuously recorded HR, CO, SV and oxygen uptake (V˙ O2) upright and supine, in control condition and after full vagal blockade with atropine. Kinetics were analysed with the double exponential model, wherein we computed the amplitudes (A) and time constants (τ) of phase 1 (φ1) and phase 2 (φ2). Results: In atropine versus control, A1 for HR was strongly reduced and fell to 0 bpm in seven out of nine subjects for HR was practically suppressed by atropine in them. The A1 for CO was lower in atropine, but not reduced to nil. Thus, SV only determined A1 for CO in atropine. A2 did not differ between control and atropine. No effect on τ1 and τ2 was found. These patterns were independent of posture. Conclusion: The results are fully compatible with the tested hypothesis. They provide the first direct demonstration that vagal blockade, while suppressing HR φ1, did not affect φ1 of CO.

Vagal blockade suppresses the phase I heart rate response but not the phase I cardiac output response at exercise onset in humans

Fagoni N.;Ferretti G.
2021-01-01

Abstract

Purpose: We tested the vagal withdrawal concept for heart rate (HR) and cardiac output (CO) kinetics upon moderate exercise onset, by analysing the effects of vagal blockade on cardiovascular kinetics in humans. We hypothesized that, under atropine, the φ1 amplitude (A1) for HR would reduce to nil, whereas the A1 for CO would still be positive, due to the sudden increase in stroke volume (SV) at exercise onset. Methods: On nine young non-smoking men, during 0–80 W exercise transients of 5-min duration on the cycle ergometer, preceded by 5-min rest, we continuously recorded HR, CO, SV and oxygen uptake (V˙ O2) upright and supine, in control condition and after full vagal blockade with atropine. Kinetics were analysed with the double exponential model, wherein we computed the amplitudes (A) and time constants (τ) of phase 1 (φ1) and phase 2 (φ2). Results: In atropine versus control, A1 for HR was strongly reduced and fell to 0 bpm in seven out of nine subjects for HR was practically suppressed by atropine in them. The A1 for CO was lower in atropine, but not reduced to nil. Thus, SV only determined A1 for CO in atropine. A2 did not differ between control and atropine. No effect on τ1 and τ2 was found. These patterns were independent of posture. Conclusion: The results are fully compatible with the tested hypothesis. They provide the first direct demonstration that vagal blockade, while suppressing HR φ1, did not affect φ1 of CO.
File in questo prodotto:
File Dimensione Formato  
Fontolliet EJAP 2021 atropine.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554838
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact