This study aims to produce a mix of enzymes through Solid State Fermentation (SSF) of raw materials. Four different, easily available, agro-industrial wastes were evaluated as SSF substrates for enzymes production by Cryphonectria parasitica (Murr.) Barr. environmental strains named CpA, CpB2, CpC4, and CpC7. Among the tested wastes, organic wheat bran for human use and wheat bran for animal feed better supports C. parasitica growth and protease production without any supplements. SDS-PAGE analyses highlighted the presence of three bands corresponding to an extracellular laccase (77 kDa), to the endothiapepsin (37 kDa), and to a carboxylesterase (60.6 kDa). Protease, laccase, and esterase activities by C. parasitica in SSF were evaluated for 15 days, showing the maximum protease activity at day 9 (3955.6 AU/gsf,). Conversely, the best laccase and esterase production was achieved after 15 days. The C. parasitica hypovirulent CpC4 strain showed the highest laccase and esterase activity (93.8 AU/gsf and 2.5 U/gsf, respectively). These results suggest the feasibility of a large-scale production of industrially relevant enzymes by C. parasitica strains in SSF process on low value materials.
Agro-industrial wastes: A substrate for multi-enzymes production by cryphonectria parasitica
Savino S.Formal Analysis
;Bulgari D.
Investigation
;Monti E.Funding Acquisition
;Gobbi E.Conceptualization
2021-01-01
Abstract
This study aims to produce a mix of enzymes through Solid State Fermentation (SSF) of raw materials. Four different, easily available, agro-industrial wastes were evaluated as SSF substrates for enzymes production by Cryphonectria parasitica (Murr.) Barr. environmental strains named CpA, CpB2, CpC4, and CpC7. Among the tested wastes, organic wheat bran for human use and wheat bran for animal feed better supports C. parasitica growth and protease production without any supplements. SDS-PAGE analyses highlighted the presence of three bands corresponding to an extracellular laccase (77 kDa), to the endothiapepsin (37 kDa), and to a carboxylesterase (60.6 kDa). Protease, laccase, and esterase activities by C. parasitica in SSF were evaluated for 15 days, showing the maximum protease activity at day 9 (3955.6 AU/gsf,). Conversely, the best laccase and esterase production was achieved after 15 days. The C. parasitica hypovirulent CpC4 strain showed the highest laccase and esterase activity (93.8 AU/gsf and 2.5 U/gsf, respectively). These results suggest the feasibility of a large-scale production of industrially relevant enzymes by C. parasitica strains in SSF process on low value materials.File | Dimensione | Formato | |
---|---|---|---|
fermentation-07-00279.pdf
accesso aperto
Descrizione: articolo full text
Tipologia:
Full Text
Licenza:
PUBBLICO - Creative Commons 4.0
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.