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Abstract: This study aims to produce a mix of enzymes through Solid State Fermentation (SSF)
of raw materials. Four different, easily available, agro-industrial wastes were evaluated as SSF
substrates for enzymes production by Cryphonectria parasitica (Murr.) Barr. environmental strains
named CpA, CpB2, CpC4, and CpC7. Among the tested wastes, organic wheat bran for human use
and wheat bran for animal feed better supports C. parasitica growth and protease production without
any supplements. SDS-PAGE analyses highlighted the presence of three bands corresponding to an
extracellular laccase (77 kDa), to the endothiapepsin (37 kDa), and to a carboxylesterase (60.6 kDa).
Protease, laccase, and esterase activities by C. parasitica in SSF were evaluated for 15 days, showing
the maximum protease activity at day 9 (3955.6 AU/gsf,). Conversely, the best laccase and esterase
production was achieved after 15 days. The C. parasitica hypovirulent CpC4 strain showed the highest
laccase and esterase activity (93.8 AU/gsf and 2.5 U/gsf, respectively). These results suggest the
feasibility of a large-scale production of industrially relevant enzymes by C. parasitica strains in SSF
process on low value materials.

Keywords: esterase; aspartic protease; laccase; solid state fermentation; wheat bran; by-products

1. Introduction

Currently, a key theme in sustainable development is the requirement of appropriate
waste management (UNEP, 2011; UNHSP, 2010), based on the notion that waste can
be a resource [1,2]. Agriculture and food processing produce solid organic wastes in
large quantities and their improper disposal may cause severe environmental, social,
and economic impacts. Agro-food wastes and by-products have been receiving growing
attention as they are abundant [3], and rich in proteins, sugars and minerals which can be
converted and assimilated by microorganisms [4]. One attractive valorization of agro-food
wastes is their application in bio-refinery processes as substrates for microbial growth to
produce various commodity chemicals and industrial enzymes [5–7].

The industrial importance of enzymes as biological catalysts ranges from the food
industry to paper, pulp, and detergent treatments. Currently, 60% of the global market is
covered by proteases, with applications in detergents, leather processing, food and feed
processing, pharmaceuticals, chemicals, and waste treatment [8]. Among the remaining
enzymes, laccases are polyphenol oxidases involved in biopulping and bioleaching, denim
washing, textile dye decolorization, and wastewater treatment [9,10] and esterases and
lipases are used in many industrial applications, such as for detergents [11,12]. Enzymes
are relatively expensive reagents: around 30–40% of their production cost is accounted for
by the fermentation substrate that could be greatly reduced by using low-cost substrates
such as agro-food residues [13].
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Microorganisms, fungi in particular, have been regarded as a treasure source of useful
enzymes for the positive environmental impact of their production processes. In fact, fungi
can grow on low-cost materials while secreting high amounts of enzymes, which eases
downstream processing [14]. In addition, fungal enzymatic production is not subjected
to ethical evaluation and consequent regulatory issues, as long as its use is confined to
specific fermentation facilities and proper disposal is implemented.

A relevant part of the world enzyme market derives from microorganisms under
submerged fermentations (SmF) [15] due to high amounts of enzyme recovered, low-
cost production, and, finally, stability of the polypeptides at various extreme conditions.
However, over the last twenty years, the interest in solid state fermentation (SSF) processes
have markedly increased, appearing in a large number of patents and publications [16]. SSF
is a promising technology enabling microorganisms to produce biomolecules by growing
on solid substrates used both as a physical support and as a source of nutrients in an
environment with the absence or near absence of free-flowing liquid [13,17].

SSF has some advantages over SmF, since the provided environmental conditions
resembles the natural habitat of the fungus [18], allowing adequate growth and high yield
of target enzymes production. Furthermore, SSF has a lower energy requirement and
demands simpler extraction processes to obtain the desired enzymes [4,19–21].

Therefore, there is an increasing interest in the bioprocessing of agro-industrial wastes
through SSF, achieving their valorization to produce industrial enzymes [22–24]. In most
cases, filamentous fungi are particularly interesting for SSF processes, since they have
the unique capacities to colonize the interparticle spaces of solid matrices and to secrete
mixtures of enzymes, in place of single enzymes, that allow to metabolize complex mixtures
of organic compounds found in most residues, as required by several industries [25–27].
Unfortunately, few fungal strains meet the criteria for commercial production, so far. In fact,
the production of low-cost and readily available enzymes possessing suitable operating
characteristics is still challenging.

Cryphonectria parasitica (Murr.) Barr is a filamentous ascomycete well known for its
ability to secrete a range of proteins with industrial applications that are being commercially
produced through different fermentation procedures [28–31]. For example, milk-clotting
enzymes were produced by C. parasitica, and they are considered as GRAS (generally
recognized as safe) substances [32].

Interestingly, C. parasitica is also the agent of the plant disease chestnut blight, causing
relevant economic losses worldwide [33]. C. parasitica is also a model study for mycovirus-
fungi interactions, since it naturally harbors a number of viruses, among which is Cry-
phonectria hypovirus-1 (CHV1), a mycovirus that alters the host virulence and is used for
natural biocontrol [34]. CHV1 is also known to down- and up-regulate the expression of
several genes, with a corresponding reduction/increase of the relative products including
enzymes [35,36].

The present study aims at the definition of an eco-friendly multiple enzymes pro-
duction protocol through SSF. More precisely, the feasibility of different food wastes as
sole substrates, with no supplements, has been evaluated for the growth and the produc-
tion of aspartic endopeptidase (EC 3.4.23), carboxylesterase, and laccase (EC 1.10.3.2) by
environmental C. parasitica strains under SSF.

2. Materials and Methods
2.1. Microorganisms and Their Molecular Characterization

Four Cryphonectria parasitica strains, named CpA, CpB2, CpC4, and CpC7 (Table 1),
newly isolated from cankers on a Castanea sativa Mill in two Italian regions, were mor-
phologically identified and stored in the collection of the Agri-food and Environmental
Microbiology Platform (PiMiAA), University of Brescia, Italy. The strains were maintained
as agar plugs of mycelium in sterile distilled water at 4 ◦C. The cultures were grown on
Potato Dextrose Agar (PDA, Merck, Milano, Italy), and incubated for 6 days at 26 ◦C under
the illumination of 16 h light/8 h dark cycles, using daylight tubes 24 W/m2, 9000 lx.
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Fungal inocula were prepared as mycelial slurry by grinding a fully-grown culture plate
(diameter 9 cm) in a Waring blender, with the addition of 26 mL of sterile deionized water.

Table 1. Environmental strains of Cryphonectria parasitica used in this study. The presence of the
hypovirus CHV1 is indicated by +.

Strain Origin Canker Type CHV1

CpA Tuscany evolutive −
CpB2 Tuscany evolutive −
CpC4 Lombardy superficial +
CpC7 Lombardy evolutive −

To assess the presence of Cryphonectria hypovirus-1 (CHV1), the C. parasitica strains
were grown on PDA covered with a sterile cellophane disc, inoculated with mycelial
plugs, and incubated at 26 ◦C for four days [37]. Mycelium was harvested by scraping
with a sterile scalpel, lyophilized, and the RNA was extracted using the PureLink RNA
purification kit (Ambion, Thermo Scientific, Milano, Italy). Synthesis of cDNA from RNA
was performed using a cDNA first strand synthesis kit (Thermo Fisher, Milano, Italy) with
hexamer primer, according to the manufacturer’s instruction.

CHV1 was detected by qRT-PCR using cDNA, prepared as described above, as a tem-
plate. Reactions were performed using the Real-time PCR PowerUp SYBR Green Master
Mix kit (Applied Biosystem, Milano, Italy) in the ViiA7 Real-time PCR system (Applied
Biosystems, Milano, Italy) and by adopting the specific primers (5337) ACCTGGTTCGCC-
GAAGAAC Rev (5405) GCAACCTCTAAGGCAACCA [38].

2.2. Agro-Food Waste Based Substrates and Solid State Fermentation
2.2.1. Effect of the Carbon Source on the Fungal Growth and Protease Activity

Wheat bran for human (organic wheat bran, OW) or for animal consumption (zootech-
nical wheat bran, ZW), and rice husk (RH), all bought at local stores, and spent espresso
coffee grounds (CG) collected from bars after espresso preparation in Brescia, Italy, were
the by-products used as substrates for fungal growth and enzymes production (Table 2).
SSF was carried out in 340 mL micropropagation boxes equipped with a 0.45 µm filter
(Micropoli, Cesano Boscone, Italy) containing 11 g of each waste. The dry substrates in
boxes were autoclaved twice at 121 ◦C for 20 min.

Table 2. Approximate chemical composition (g/100 g dry material) retrieved from scientific literature
of feed stocks used in this study.

Substrate for SSF

Chemical
Components Wheat Bran (ZW *) Rice Husk (RH) Spent Coffee

Grounds (CG)

Cellulose 32 33.4 12.5
Hemicellulose 21 21 39

Lignin 22 18.3 24
Carbohydrates 26.6 1.1 30

Protein 14.1 2 17.5
Lipids 5.5 0.8 2.3

Ash 0.5 15.5 1.3
* Similar to OZ.

2.2.2. Effect of Water Content on the Fungal Growth and Protease Activity

Different moisture contents were tested depending on the substrate composition. The
optimum water content of the dried substrates was studied over a range of 1:1 (wet basis)
(OWA, ZW, RH, and CGA); 1.5:1 (OWB) and 2:1 (CGB). Different moisture contents were
adjusted with deionized water.
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2.2.3. Effect of Substrate Density on the Fungal Growth and Protease Activity

To analyze the effect of the substrate density, the activity was tested at different
porosity using rice husk. RH substrate was separated into two series, one was milled with
a Waring blender (RHM), and the other series was unmilled (RHU).

2.3. SSF Protocol Set Up

Fungal inocula were prepared as mycelial slurry by grinding a fully-grown culture
plate (diameter 9 cm) in a Waring blender, with the addition of 26 mL of sterile deion-
ized water.

Each substrate was inoculated with 2 mL of the mycelium slurry, and incubated for
15 days at 24 ◦C, with a photoperiod of 16 h, and 50% relative humidity in a climatic
chamber (Binder Model 720, Milano, Italy). Samples (approximately 1–2 g) were asepti-
cally withdrawn at various time intervals (6, 9, 12, and 15 days) for the determination of
carboxylesterase, aspartic endopeptidase, and laccase activity, or frozen at −20 ◦C until
analyses. Five replicates for each substrate were prepared, and the experiment was re-
peated twice. The fungal growth was visually quantified by assigning a score based on
the timing of appearance and the abundance of both substrate colonization and pycnidia
production, with a scale from very poor (−/+) to abundant (++) growth.

2.4. Extraction of Crude Enzyme from the Fermented Media

Liquid-solid enzymes extraction was performed from solid fermented substrates with
distilled water (1:10, w/v) by shaking at 170 rpm for 2 h at room temperature, followed by
centrifugation of the whole content at 5000× g for 15 min at 4 ◦C. The supernatants were
used as crude enzyme source.

2.5. Protease Activity Assay

The proteolytic activity was measured by a modification of the hemoglobin method [39].
In short, 20 µL of diluted enzyme solution were added to 500 µL of pre-warmed bovine
serum hemoglobin (Merck, Milano, Italy) solution, mixed, and incubated at 37 ◦C for
15 min. The reaction was stopped by adding trichloroacetic acid (TCA), and the mixture
was cooled on ice and centrifuged at 20,000 g for 10 min at 4 ◦C to remove the unhydrolyzed
protein. The absorbance of the clear supernatant solution was measured at Abs 280 nm;
the blanks were prepared by using the same amount of assay solution, and reversing the
order of addition of TCA and hemoglobin solutions. The protease activity is expressed
as Abs 280 nm in arbitrary units (AU). One AU is defined as the enzyme amount that
produces an increase of Abs 280 nm of 0.01 under the assay conditions [40,41], measured
as the quantity of TCA-soluble products [42]. The observed AU values are normalized by
gram of fermented substrate (AU/gsf).

2.6. TBA Assay

As a preliminary screening for lipolytic activity of crude extracts, the modified TriB-
utyrin Agar Plate Assay [43] was carried out on TBA medium containing 1% tributyrin
(v/v) and 1.5% agar (w/v) in 10 cm diameter plates. Aliquots (20 µL) of the crude enzyme
extractions were placed in wells in the agar. All plates were incubated at 25 ◦C overnight,
and lipolytic hydrolysis was verified as presence of clear zone around the wells.

2.7. Esterase Activity Assay

The esterase activity was determined spectrophotometrically by measuring the hy-
drolysis of 4-nitrophenyl butyrate (pNPB) (Sigma, Milano, Italy) as a substrate [44]. The
pNPB dissolved in acetonitrile (50 mM) was added to 200 µL Na phosphate buffer (100 mM,
pH 7.5) with 0.5% Triton X-100 (v/v) (Sigma, Milano, Italy), to 0.5 mM pNPB as a final
concentration; 10 µL crude enzyme extraction were used as enzyme source. The enzymatic
reaction was carried out at 25 ◦C for 15 min. The release of 4-nitrophenol (pNP) at 405 nm
was measured by using a UV-VIS micro-plate reader (EnSight multimode reader, Perkin-



Fermentation 2021, 7, 279 5 of 15

Elmer Waltham, MA, USA). Enzyme activity calculated using the extinction coefficient
of pNP corresponding to 18.5 mM−1·cm−1, One U (µmol/min) is defined as the amount
of the enzyme that catalyzes the conversion of one micromole of substrate per minute
under the specified conditions of the assay method, and normalized by gram of fermented
substrate (U/gsf).

2.8. Laccase Activity Assay

The laccase activity was determined with 2,6-dimethyoxyphenol (DMP) (Carlo Erba,
Milano, Italy) as a substrate [45]. The oxidation of DMP was spectrophotometrically
determined by continuously recording the increase in absorbance at 468 nm at 25 ◦C for
15 min in a micro-plate reader (EnSight multimode reader, Perkin-Elmer Waltham, MA,
USA). One arbitrary unit (AU) is defined as an increase Abs 468 nm of 1.0 per min at
25 ◦C [46].

2.9. SDS-PAGE

SDS–PAGE of the crude extracts was performed using a 12% (w/v) running gel,
(Laemmli, 1970). Protein bands were visualized by Coomassie Brilliant Blue staining, and
their size estimated with the aid of the Protein Marker VI (molecular weight range from
10 to 245 kDa).

2.10. Protein Determination

Protein concentrations were determined by Coomassie Protein Assay Reagent (Sigma,
Milano, Italy), according to the method of Bradford [47], using bovine serum albumin
(Sigma, Milano, Italy) as the standard.

2.11. Statistical Analysis

For all the experiments described in the manuscript, at least three biological replicates
were performed, and the mean enzymes activities were statistically analyzed by analysis
two-way analysis of variance (ANOVA) followed by Tukey’s means grouping tests using
GraphPad Prism software 6 for Windows (GraphPad Software, San Diego, CA, USA).
Differences were considered significant at p-values < 0.05.

3. Results and Discussion

Cryphonectria (formerly Endothia) parasitica is a well-known producer of a rennin-like
protease and endothiapepsin [48], mainly used in the food industry, thanks to the GRAS
status of the fungus derived additives [32]. In addition, C. parasitica has also been shown to
produce and secrete a number of hydrolytic enzymes, including laccase [31], cellulase [28],
polygalacturonase [49], cutinase [29], and tannase [30]. All of these enzymes are normally
produced in liquid cultures, in fact, to the best of our knowledge; C. parasitica has never
been cultivated in SSF regime so far. Consequently, the feasibility of using agro-food wastes
as sole substrate for the growth and multiple enzymes production by C. parasitica in SSF
needed to be explored.

Agro-food wastes are defined as lignocellulosic biomass, with lignin and celluloses
as the main constituents. It is well known that the different materials used as substrate
can modify the fungal gene expression and, consequently, the type and quantity of the
produced enzymes, thus affecting their application in the biotechnological industry in
many ways [50,51]. In the literature, the raw materials used as SSF substrates in this study
are reported as characterized by the compositions shown in Table 2 [52–56]; as such they
could support the growth of fungi and their enzymes production under SSF.

3.1. SSF Protocol Set Up
3.1.1. Fungal Growth on Different Raw Material

The growth of the strain CpC7 on OW, ZW, RH and CG as solid substrate during a
period of 15 days is summarized in Table 3.



Fermentation 2021, 7, 279 6 of 15

Table 3. Growth of the CpC7 strain on the different substrates used in this study. (a) “−” unmilled;
“+” milled; (b) “−/+” very poor growth; “+” normal growth; “++” abundant growth.

Agro-Food Waste Abbreviation Ratio
Water/Waste Milled a C. parasitica

Growth b

Organic wheat bran OWA 1:1 − ++
OWB 1.5:1 − ++

Zootechnical wheat bran ZW 1:1 − ++

Rice husk
RHM 1:1 + +
RHU 1:1 − −/+

Spent coffee grounds CGA 2:1 − −/+
CGB 1:1 − −/+

The best growth was achieved on all the wheat bran substrates, OWA, OWB and ZW;
representative samples on OWA at different times of incubation are shown in Figure 1.
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(C) 9, (D) 12 and (E) 15 days of fermentation. The top (A–E) and bottom (A’–E’) surfaces of the OWA
colonized substrates are shown. (A,A’), not inoculated substrate.

In detail, fungal white mycelium was visible at day 4 after inoculation on the upper
surface. It completely colonized the biomass at day 6 of incubation, with abundant orange
pycnidia production visible at day 12 (Figure 1D’). As far as the effect of the water content
is concerned, the fungal growth appeared earlier, and fructification was more abundant on
OWB than on OWA, indicating that both water conditions were conducive to growth, but
the higher water content of OWB was more supportive (data not shown).

Conversely, RH and CG resulted less conducive of fungal growth. In detail, the
substrate density represented another decisive factor for the rate and extent of the biomass
colonization and should be cautiously altered, as it resulted strictly associated to aeration of
the biomass and eventually to its colonization. A very high density of the matrix elements
occurred in CGA and CGB, where the small particles appeared to pack together tightly, and
corresponded to a very poor fungal growth, limited only to the biomass surface (Figure S1).
This behavior could be determined by the scarce oxygenation of the media that limited an
extensive fungal growth [57].

Inversely, when the very coarse matrix RHU was compared to the more regular RHM
(Figure S1), the latter allowed a better fungal growth with a faster colonization than RHU.
In fact, the mycelium covered the substrate at day 7 with a good production of pycnidia,
but nonetheless with a lower performance than on wheat bran. The coarse RHU turned
out as the less appropriate substrate for C. parasitica growth.

No growth was observed on not inoculated substrates.
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3.1.2. Protease Production under SSF

The fungal enzymatic production was analyzed in the crude extract obtained from
SSF at different time points. No aspartic protease activity was detected in CGA, CGB
and RHB. Higher aspartic protease activity was found when CpC7 grew on OW and
ZW than on the other substrates, possibly due to the better fungal growth achieved on
these wastes. On wheat bran substrates, aspartic protease activity was measured starting
from day 4 of fermentation, with values above 2000 AU/gsf. Protease production was not
significantly influenced by wheat bran substrates composition. The maximum enzymatic
activity was detected on day 8, with values of 3980.6± 646 AU/gsf, 4123.5± 1259.9 AU/gsf,
and 3703.2 ± 350.7 AU/gsf, for OWA, OWB, and ZW, respectively (Figure 2). Inversely,
the protease activity was 133.6 ± 32,7 AU/gsf after 7 days of growth on RHA that was
significantly lower (95.0% of confidence interval, p < 0.05). After this peak, protease activity
decreased to 20% of the correspond peak values.
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Figure 2. Effect of different wheat bran substrates (OWA, OWB and ZW) on protease produc-
tion by CpC7 strains under SSF conditions, after eight days of fermentation. Data represent the
average ± standard deviation of biological replicate cultures (n = 3).

In summary, wheat bran resulted to be conducive to fungal growth and to aspartic
protease production without further supplementation. Moreover, wheat bran is a local
waste for Italy, readily available in many regions, and hence a low-cost substrate.

As far as the water content of the substrate is concerned, the ratio water/waste 1:1
proved to be sufficient to ensure a very good growth and enzymatic production, making
the process more affordable and sustainable, being far less water consuming in comparison
to other reported methods for enzymes production either in SSF and SmF [40,57–61]. The
potential presence of pesticide residues in the ZW, below the commercial threshold, but
still able to interfere with the fungal growth, did not occur. Thus, even if the organic wheat
bran OW gave a faster colonization, ZW was the economical choice as the sole substrate
for further experiments of multiple enzymes production through SSF.

3.1.3. Enzymes Putatively Identification

Electrophoretic analysis of the crude enzymatic extracted at different time points of the
CpC7 culture showed three main bands (Figure 3). These potentially corresponded to an
extracellular laccase that migrates as a polypeptide with a molecular mass of approximately
77 kDa [46] to the endothiapepsin of 37 kDa (Brown et al., 1990), and to an unidentified pro-
tein of 27 kDa (Figure 3). Moreover, a band potentially corresponding to a carboxylesterase
of 60.6 kDa [63] was present. This result suggests a good enzyme production and a purity
of the crude extracts that might not require further purification steps.
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3.2. Multi-Enzymes Production under SSF

Successively, the SSF protocol previously established was applied to grow four envi-
ronmental strains of C. parasitica for the simultaneous multiple production of enzymes.

3.2.1. Strains Characterization

C. parasitica is a well-known fungus among plant pathologist as the agent of a severe
disease of chestnut trees, where it normally produces perennial necrotic lesions, the so-
called cankers. Some strains, however, are associated with superficial or healing cankers
on susceptible host trees; these hypovirulent strains usually host a mycovirus, the RNA
hypovirus CHV1, that decreases their ability to produce the disease on chestnut trees [64,65]
by affecting the expression of several genes.

Therefore, the environmental C. parasitica strains used in this work, isolated from
cankers on chestnut trees, were characterized for the presence of CHV1, since it could
influence their enzymatic production [36,51,66]. The RT-qPCR revealed the presence of
CHV1 only in the CpC4 strain (Table 1).

3.2.2. Multiple Enzymes Activities

To the best of our knowledge, the concomitant production of protease, esterase, and
laccase, by environmental C. parasitica strains under SSF on ZW was here reported for the
first time.

The highest protease activity was registered at day 9 of fermentation, with com-
parable values among the 4 strains, ranging from 3955.6 ± 279.1 AU/gsf for CpA, to
3785.8 ± 263.3 AU/gsf for CpB2 (Figure 4A) in spite of the similar total protein content of
the different crude extracts of the isolates (Table S1).

The time course of the protease production was quite similar among all strains. In
detail, the protease production increased from the sixth day up to the ninth, when it
reached its maximum; a subsequent decrease of activity was observed with a plateau of
production from day 12 in CpB2 and CpC7, or a more or less sharp decline in CpC4 and
CpA, respectively (Figure 4A). In general, this growth-associated protease production
profile was already observed for other fungi [59,67], and it is related to the degradation of
extracellular enzymes and/or the depletion of available nutrients.
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C. parasitica environmental strains (CpA, CpB2, CpC4, CpC7), grown on ZW for 15 days. Different
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The same amount of protease was obtained by the virulent strains, as well as by the
hypovirulent CpC4. As reported previously for the C. parasitica virus-free strain EP155 and
its hypovirus infected isogenic strain, no significant changes upon hypovirus infection were
detected in the production of extracellular enzymes taking part in nutrient utilization [63],
such as the endothiapepsin precursor.

As far as laccase is concerned, its production occurred later in the fungal growth cycle,
with a significant increase of the activity starting at day 12 in all the strains (Figure 4B).
In detail, CpC7 was characterized by a sharp increase reaching the maximum produc-
tion at day 15 of growth. CpC4 strain proved to be the best producer, with a laccase
yield of 93.8 ± 2.9 AU/gsf at day 15 of growth, significantly higher than the other strains,
corresponding to 6.5-fold increase. No activity was observed on non-inoculated samples.

While both protease and laccase production by C. parasitica in various types of liquid
culture has already been reported, esterase and lipase activities have been scarcely studied
in this fungus.
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Preliminary evaluation of lipolytic activity by TBA assay evidenced a transparent
halo around the disks with fungal crude extracts. These halos increased with the age of
the cultures; notably, they appeared in the samples corresponding to day 9 and remained
constant up to day 15. (Figure S2).

Here, for the first time, esterase activity was quantified in the crude extracts produced
by environmental strains of C. parasitica. Esterase activity was significantly affected by
the fermentation time following two different trends. In CpB2 and CpC4, the maximum
esterase activity was reached after 15-day incubation with the yield of 1.69 ± 0.07 and
2.55 ± 0.12 U/gsf, respectively. In detail, the enzyme activity in CpC4, the best esterase
producer, was 2.73-fold higher at 15 days than at 12 days of incubation (0.93 ± 0.48 U/gsf).
Inversely, CpA and CpC7 esterase activity slightly increased to their maximum value of
1.16 ± 0.09 after 12 days, and 0.72 ± 0.040 U/gsf after 15 days of fermentation, respectively
(Figure 4C). No activity was observed on the non-inoculated substrate. Esterase and laccase
production in SSF process seems to be associated with fungal growth phase, likely due to
the very metabolic development of the microorganisms as previously reported [68–70].

Laccase, extracellular lipase and carboxylesterase are reported to be downregulated
upon hypovirus infection [62]. In detail, the three laccase isoforms produced by C. para-
sitica [65] are modulated by the presence of hypovirus, and their activity is differentially
suppressed by different CHV1 isolates, and also influenced by the culture conditions [66].
Surprisingly, in our study, CpC4 is the best laccase and esterase producer after 15 days of
fermentation. The hypovirulent strain showed a level of activities 10-fold and 2-fold higher,
respectively, than the other strains, in spite of being the only strain hosting CHV1. This
apparently discordant behavior could be explained by the different genetic background
of the pair Ep155 and its isogenic hypovirus infected strain, and the pair CpC4 and its
virus free isogenic strain, producing quite different enzyme yields. In this regard, it would
be interesting to cure CpC4 from the hypovirus to verify the CHV1 effect on the laccase
production of the virus-free strain. Moreover, different hypoviruses and different CHV1
variants could cause a differential suppression of extracellular laccase, with some allowing
a laccase activity to nearly virus-free levels [71]. Lastly, the culture conditions [71,72], such
as the composition of the culture medium [72], could affect the enzymatic productions.
Effectively, the different production of laccase and esterase found in the present study could
be associated to specific features of the applied substrate and to the different timing used
to assess the enzymes production compared to those applied in Rigling and Van Alfen [46],
who found a 5-fold higher level of extracellular laccase expression by the dsRNA-free strain,
grown in complete liquid medium for 5 days than the hypovirus infected isogenic strain.

The current finding of a hypovirulent strain characterized by an excellent enzymatic
production makes the SSF method here presented a sustainable and completely circular
technology. It offers the simultaneous production of multiple enzymes, and the possibility
to use the SSF substrates entangled with the hypovirulent strain as fungal biomass to be
applied in biological control treatment of chestnut cankers. The appreciable production of
a cocktail of 3 enzymes (protease, lipase/esterase, and laccase) by single strains could be
applied in textile industry [73].

As evidenced in this study, C. parasitica shows a high potential for its further study as
an industrial enzyme-producing fungus. Several industries require cocktail of enzymes in
place of a single enzyme, as the latter will not function as efficiently for many applications
e.g., for biomass hydrolysis or detergents developments [74]. Development of a cost-
effective cocktail is still one of the major challenges. Hence single microorganisms able to
produce multiple enzymes are needed as well as protocols for a concurrent production of
multiple enzymes are of great value.

A summary of the protease, laccase and esterase activities from fungi is reported in
Table 4. Although a direct comparison between data from the literature and our data is
not possible due to the differences in the enzymatic assays used, protease and laccase
production by C. parasitica registered higher yields than several values mentioned in the
literature and, notably, without the need of any nutritional supplements.
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Table 4. Comparison of enzyme activity of protease, laccase and esterase/lipase from C. parasitica strains of current study
with other reports.

Enzyme Microorganism SSF Substrate Fermentation
Period

Enzyme
Substate Unit Definition Enzyme

Activity Reference

Protease

A. oryzae
MTCC 5341

Wheat bran with
supplements 120 h Hemoglobin 1 U = 0.001 increase

in A280 nm/min
864,000 U/gds

a
Vishwanatha

et al., 2010

C. parasitica
CpA Wheat bran 9 days Hemoglobin

1 AU = 0.01
increase in

A280 nm/min
3955.6 U/gsf

b Current
study

A. oryzae
(Ozykat-1)

Wheat bran and
rice bran 4 days Casein 1 U = release 1 µg

tyrosine/min 1200 U/gds
Chutmanop
et al., 2008

Laccase

P. acaciicola
AGST3

Wheat bran with
supplements 12 days ABTS * 1 U = oxidation 1

µmol ABTS/min 535,000 U/gds
Thakur and
Gupte 2015

T. versicolor
JSRK13

Parthenium sp.
with supplements 17 days Guaiacol 1 U = 0.01 increase

A470 nm/min 185 U/gsf
Singh et al.,

2019

C. parasitica
CpC4 Wheat bran 15 days 2,6-

Dimethoxyphenol
1 AU = 1.0 increase

A468 nm/min 93.8 U/gsf
Current
study

Esterase
/Lipase

R. microsporus
CPQBA

312-07 DRM

Wheat bran and
sugarcane bagasse
with supplements

18 h Olive oil
1 U = release 1
µmol fatty
acid/min

265 U/gsf
Pitol et al.,

2017

A. ibericus
MUM 03.49

Olive pomace and
wheat bran with

supplements
7 days pNP-butyrate ** 1 U = release 1

µmol di pNP/min 223 U/gds
Oliveira

et al., 2017

C. parasitica
CpC4 Wheat bran 15 days pNP-butyrate 1 U = release 1

µmol di pNP/min 2.55 U/gsf
Current
study

Bold: Cryphonectria stain isolated in this work; a
ds: dry substrate, b

sf: substrate fermented; * ABTS: 2,2′-Azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid); ** pNP-butyrate: p-Nitrophenyl butyrate.

According to the obtained results, further studies will be carried out to optimize the
SSF protocol here presented. Parameters such as variation in C/N ratio besides several
other physicochemical factors are important in the development of fermentation process
and their interactions should be evaluated in order to increase the expression of each
enzyme of the cocktail to levels comparable to the best single producers.

4. Conclusions

The ability of the filamentous ascomycete C. parasitica to colonize agro-industrial
wastes without any pre-treatment and supplements as a source of value-added bio-products
by means of SSF was verified in this study.

To the best of our knowledge, this is the first report on multiple enzymes production
by C. parasitica on agro-industrial wastes. All newly isolated C. parasitica strains were able
to (i) grow, metabolize the substrate, and (ii) produce multiple enzymes on ZW without any
other supplement. Interestingly, the crude extract obtained from the hypovirulent strain
CpC4 showed the highest enzymatic activities, resulting an ideal candidate for further
studies on the feasibility of large-scale production of industrially relevant enzymes.

In the circular economy view, the here presented approach could lead to develop a
biorefinery without waste production. The fermentation substrates could be addressed for
the production of microorganism-based fertilizer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fermentation7040279/s1, Table S1. Total protein content of crude extract of four C. parasitica
environmental strains (CpA, CpB2, CpC4, CpC7), at different time points of fermentation, grown
on ZW for 15 days. Data represent the average ± standard deviation of biological replicate cultures
(n = 3). Figure S1. Growth of CpC7 strain under SSF using as solid substrate spent coffee grounds
(CGA and CGB) and rice husk (RHM and RHU). Cnt, not inoculated substrate (negative control).
Figure S2. Preliminary evaluation of lipolytic activity by TBA assay. It showed that the zone of
hydrolysis evidenced a transparent halo around the disks with fungal crude extracts starting at day

https://www.mdpi.com/article/10.3390/fermentation7040279/s1
https://www.mdpi.com/article/10.3390/fermentation7040279/s1
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6 (B), and increased with the age of the cultures day 9, 12, 15 (respectively, C, D, E); no transparent halo
around in the samples corresponding to day 2 (A) and negative control not inoculated substrate (F).
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