Automated planning is a prominent Artificial Intelligence (AI) challenge that has been extensively studied for decades, which has led to the development of powerful domain-independent planning systems. The performance of domain-independent planning systems are strongly affected by the structure of the search space, that is dependent on the application domain and on its encoding. This paper proposes and investigates a novel way of combining machine learning and heuristic search to improve domain-independent planning. On the learning side, we use learning to predict the plan cost of a good solution for a given instance. On the planning side, we propose a bound-sensitive heuristic function that exploits such a prediction in a state-space planner. Our function combines the input prediction (derived inductively) with some pieces of information gathered during search (derived deductively). As the prediction can sometimes be grossly inaccurate, the function also provides means to recognise when the provided information is actually misguiding the search. Our experimental analysis demonstrates the usefulness of the proposed approach in a standard heuristic best-first search schema.
Improving Domain-Independent Heuristic State-Space Planning via plan cost predictions
Percassi F.;Gerevini A. E.;Serina I.;Vallati M.
2021-01-01
Abstract
Automated planning is a prominent Artificial Intelligence (AI) challenge that has been extensively studied for decades, which has led to the development of powerful domain-independent planning systems. The performance of domain-independent planning systems are strongly affected by the structure of the search space, that is dependent on the application domain and on its encoding. This paper proposes and investigates a novel way of combining machine learning and heuristic search to improve domain-independent planning. On the learning side, we use learning to predict the plan cost of a good solution for a given instance. On the planning side, we propose a bound-sensitive heuristic function that exploits such a prediction in a state-space planner. Our function combines the input prediction (derived inductively) with some pieces of information gathered during search (derived deductively). As the prediction can sometimes be grossly inaccurate, the function also provides means to recognise when the provided information is actually misguiding the search. Our experimental analysis demonstrates the usefulness of the proposed approach in a standard heuristic best-first search schema.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.