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ABSTRACT
Automated planning is a prominent Artificial Intelligence (AI) challenge that has
been extensively studied for decades, which has led to the development of power-
ful domain-independent planning systems. The performance of domain-independent
planning systems are strongly affected by the structure of the search space, that is
dependent on the application domain and on its encoding.

This paper proposes and investigates a novel way of combining machine learning
and heuristic search to improve domain-independent planning. On the learning side,
we use learning to predict the plan cost of a good solution for a given instance.
On the planning side, we propose a bound-sensitive heuristic function that exploits
such a prediction in a state-space planner. Our function combines the input predic-
tion (derived inductively) with some pieces of information gathered during search
(derived deductively). As the prediction can sometimes be grossly inaccurate, the
function also provides means to recognise when the provided information is actually
misguiding the search. Our experimental analysis demonstrates the usefulness of the
proposed approach in a standard heuristic best-first search schema.
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1. Introduction

Automated planning is one of the most prominent AI challenges; it has been studied
extensively for several decades and has led to a large number of real-world applica-
tions. In recent years, there has been considerable progress in developing powerful
domain-independent planners, in no small part spurred on by the International Plan-
ning Competitions.

The performance of current planning systems are affected by the structure of the
search space, which depends on the application domain and its encoding. In many
cases, the planning performance can be improved by deriving and exploiting knowl-
edge about the structure of the problem and its potential solutions that is not explicitly
given in the input formalisation, and that can be used for optimising the planner per-
formance. Well-known examples include portfolio configuration (Gerevini, Saetti, &
Vallati, 2014; Howe, Dahlman, Hansen, Von Mayrhauser, & Scheetz, 1999; Roberts,



Howe, Wilson, & desJardins, 2008; Seipp, Sievers, Helmert, & Hutter, 2015), reformu-
lation approaches such as macro-operators (Botea, Enzenberger, Müller, & Schaeffer,
2005; Chrpa & Vallati, 2019; Korf, 1985; Scala, 2014; Scala & Torasso, 2015; Vallati,
Chrpa, & Serina, 2020), entanglements (Chrpa, Vallati, & McCluskey, 2019), action
schema splitting (Areces, Bustos, Dominguez, & Hoffmann, 2014), model configura-
tion (Vallati, Hutter, Chrpa, & McCluskey, 2015; Vallati & Serina, 2018), case-based
planning (Bonisoli, Gerevini, Saetti, & Serina, 2015; Borrajo, Roub́ıcková, & Serina,
2014; Serina, 2010), and state constraints (Gerevini & Schubert, 2000). For an exten-
sive overview of the field, the interested reader is referred to the work of Celorrio, de la
Rosa, Fernández, Fernández, and Borrajo (2012).

Another kind of knowledge that could be derived by analysing a planning problem
is the expected (predicted) cost of its solutions, and in particular of an optimal or
good quality solution. Taking inspiration from the significant amount of work devoted
at handling solution quality bounds (see, for instance, (Stern et al., 2014; Thayer &
Ruml, 2011)), the question that we address in this paper is the following: How can we
exploit a prediction of the plan cost of a (good) solution to improve search performance?
Predictions on the plan costs can come from different sources: they can be made by
human experts, or computed automatically through, e.g., inductive methods based
on machine learning approaches. The use of such a prediction during the planning
search poses a number of interesting challenges about how to fruitfully exploit it to
improve planning performance. This is because predicted values can sometimes be
grossly inaccurate and either under- or over-estimating the cost of the optimal plan,
or of the best-quality plan that can be found by the considered planning approach
within a certain time limit. Due to this, such predictions can not be straightforwardly
used as bounds, but there is a need for appropriately designed approaches.

To address the above question, and building on our preliminary results (Percassi,
Gerevini, Scala, Serina, & Vallati, 2020), in this paper we first introduce a domain-
independent approach for predicting the plan cost of a “good” solution of a planning
instance; then, to exploit the knowledge provided by these predictions, we introduce a
set of best-first search that can choose the nodes to visit considering the predicted plan
cost combined with pieces of information collected during search (heuristic costs to
reach the goal, current cost from the root, number of expanded nodes). In particular, we
define and introduce unidirectional and bidirectional heuristics function. The former
is guiding the search towards the provided prediction, aiming at not exceeding it. The
latter approach works on both sides of the predicted plan cost value, affecting the
search space exploration accordingly. The heuristics can mitigate the impact of the
prediction when the search recognises that such a prediction is actually misguiding
the search because too inaccurate.

To evaluate the proposed approaches we perform an extensive experimental analy-
sis using well-known benchmarks from the International Planning Competitions. This
analysis shows that our techniques for exploiting the learned knowledge can be highly
beneficial in the context of a best-first search approach to domain-independent plan-
ning.

The rest of this paper is organised as follows. Section 2 provides the necessary back-
ground and describes existing planning features. Section 3 introduces our domain-
independent approach to predicting plan cost of good quality solutions. Section 4 de-
scribes the designed best-first search. Section 5 provides the results of our experimental
analysis. Section 6 discusses related work. Finally, Section 7 gives the conclusions.
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2. Essential Background

This section is devoted to introduce the required background in terms of representa-
tion, heuristic search, and predictive models for classical planning. Classical planning
is concerned with finding a (partially or totally ordered) sequence of actions transform-
ing the static, deterministic and fully observable environment from the given initial
state to a desired goal state (Ghallab, Nau, & Traverso, 2004).

2.1. Representation

We focus on (propositional) classical planning, also called STRIPS (Fikes & Nilsson,
1971) with cost. A STRIPS planning task is defined by the tuple Π = 〈F,A, I,G〉
where:

• F is a finite set of propositional facts;
• A is a finite set of actions; each a ∈ A is a triple 〈Pre(a),Eff −(a),Eff +(a)〉

where Pre(a) ⊆ F is a set of preconditions, Eff −(a) ⊆ F is a set of delete effects
and Eff +(a) is a set of positive effects; each action a ∈ A is associated to a
non-negative cost, i.e cost(a) ∈ N;
• I ⊆ F is the initial state;
• G ⊆ F is the goal specification.

Facts in F can be interpreted as the Boolean state variables of our problem. A
state s in STRIPS is a subset of F ; any fact f ∈ F that belongs to s is true in s, or,
equivalently, it is assigned the value of >; by closed-world assumption, if a fact f ∈ F
does not belong to s, f is said to be false in s, or equivalently f is assigned to value
of ⊥. An action a is said to be applicable in a state s iff Pre(a) ⊆ s. The application
of a in s generates a new state s[a] = (s \ Eff −(a)) ∪ Eff +(a).

A plan π is a sequence of actions 〈a0, a1, · · · , an−1〉. Let 〈s0 = I, s1, · · · , sn〉 be the
sequence of states generated by iteratively applying actions from I, i.e., for all 0 < i ≤
n, si = si−1[ai−1], a plan is said to be applicable in I iff all actions are executable across
the generated sequence of states, i.e. Pre(a0) ⊆ I and for all 0 ≤ i < n, Pre(ai) ⊆ si.
A plan is said to be a solution plan for a given planning problem iff it is applicable in
I and the generated sequence of states ends in a state sn such that G ⊆ sn. The cost
of a plan π is the sum of the cost of each action in π, i.e.,

∑
a∈π cost(a). A plan is said

to be optimal if there is no solution with inferior plan cost.

2.2. Heuristic Search

A well established approach to solving planning tasks is forward heuristic search over a
transition system induced by the grounding of Π.1 That is, start from the initial state,
and navigate the state space by the domain actions applied using a best-first search
policy until a goal state is found. Best-first search usually organises the exploration
by expanding from a frontier the node n that minimises a given function f(n). Let
g(n) be the length or the plan cost of the prefix leading to node n, h(n) a heuristic
function predicting the remaining cost to get to the goal, and w a constant weight.
With f(n) = g(n)+w ·h(n) the best-first search becomes the well known weighted A*

1The grounding of a planning task is a transformation of all operators in a set of action instances, one for
each possible instantiate of its parameters. Powerful techniques to do this automatically and in a way to focus

only on actually reachable actions is described by Helmert (2003).
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algorithm (Pohl, 1970). A critical aspect in such a setting is to devise a heuristic that
well balances the precision of the h(n) estimating the actual distance to the goal (h∗)
and its computational cost. A popular way to devise a suitable heuristic function for a
STRIPS problem is by exploiting its delete-free relaxation. The delete-free relaxation
of a STRIPS Problem Π is a new STRIPS problem Π+ which is identical to Π except
that all the actions have empty negative effects. This relaxation has been proved
effective to devise heuristics with a good trade-off between precision and computational
cost. Several delete-free relaxation heuristics have been defined in the literature (e.g.,
(Bonet & Geffner, 2001; Domshlak, Hoffmann, & Katz, 2015; Hoffmann & Nebel,
2001)), but for the scope of this work it is only important to discern when such
heuristics are admissible and when they are not. A heuristic is said to be admissible if
it does not overestimate the actual solution cost, inadmissible otherwise. Admissible
heuristics with w = 1 can be used to make A* always produce an optimal solution;
inadmissible heuristics trade this admissibility for more information of the relaxed
problem, and some of them are quite convenient approximations from a practical
standpoint, especially when optimality is not a major concern. In this work, we will
use three heuristics, all exploiting the delete-free relaxation principle: hmax (Bonet &
Geffner, 2001), hFF (Hoffmann & Nebel, 2001) and hLM (Richter & Westphal, 2010).
hmax is admissible, while both hFF and hLM only provide inadmissible estimates.

2.3. Predictive Models

Predictive models in classical planning have been traditionally designed to predict
the performance of a given planning engine on a previously unseen planning task.
Predictions are possible by exploiting Empirical Performance Models (EPMs) which
are built by: (i) observing performance of solvers on a large set of training tasks;
(ii) extracting task-specific features from each training problem; and (iii) learning a
predictive model that maps features’ value with observed performance (Hutter, Xu,
Hoos, & Leyton-Brown, 2014).

Each feature is either a number or a categorical value that represents a property
of the domain or problem model (e.g., the number of objects). In a sense, a feature
summarises a potentially important property of the considered task. The whole set of
features can be seen as the “fingerprint” of the planning instance at hand.

In the past decade, there has been a significant amount of work dedicated to iden-
tify large and informative set of features for classical planning. Given the good results
achieved by Fawcett et al. (2014) in predicting planners’ performance, in this work we
decided to consider the set of features they exploited. They considered a large set of
features, that included features proposed by Roberts et al. (2008) and Cenamor, de la
Rosa, and Fernández (2012, 2013). The final set contains 311 instance features, clas-
sified into seven groups. Below, we provide a short description for each class, pointing
out the type and number of features.

PDDL. By considering the PDDL domain and problem files, 49 features are ex-
tracted. These features include information about the use and number of object
types, the language requirements, the number of operators, etc.

Fast Downward. This class includes 87 features that are extracted by exploiting
the translation and preprocessing tools of Fast Downward (Helmert, 2006). The
features are gathered by analysing the translation process (such as the num-
ber of removed operators and propositions and number of implied preconditions
added), the finite domain representation created (such as the number of vari-
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ables, number of mutex groups, and statistics over operator effects), the output
of the preprocessing process (such as the percentage of variables, mutex groups
and operators deemed necessary); a number of additional features about causal
and domain-transition graphs are extracted by analysing the finite domain rep-
resentation generated by Fast Downward.

LAMA probing. The LAMA (version 2011) planner (Richter & Westphal, 2010)
is run for 1 CPU second in order to extract some features from the resulting
planning trajectory, such as the number of reasonable orders removed, landmark
discovery and composition, and the number of graph edges. In total, 16 features
belong to this class.

LPG preprocessing. 6 features are extracted by running the pre-processing phase
of LPG (Gerevini, Saetti, & Serina, 2003, 2008, 2011a). This includes features
such as the number of facts, the number of “significant” instantiated operators
and facts, and the number of mutual exclusions between facts.

Torchlight. Torchlight (Hoffmann, 2011) is a tool for analysing local search topology
under h+. From its analysis it is possible to extract 10 features by considering
success (sample state proved not to be a local minimum) and dead-end percent-
ages, and statistics over exit distance bounds and preprocessing results.

SAT representation. A planning task can be translated into a propositional logic
formula in CNF (Conjunctive Normal Form), to support the use of SAT solvers.
The Madagascar-p (Rintanen, 2012) system is used to perform such a translation
into a CNF formula with a planning horizon of 10 time steps. From the CNF
formula, up to 115 features can be extracted leveraging the SATZilla framework
(Xu, Hutter, Hoos, & Leyton-Brown, 2008). The interested reader is referred to
(Hutter, Xu, Hoos, & Leyton-Brown, 2014) for a detailed description of these
features.

Success and timing. For each of the aforementioned six extraction procedures, the
CPU time required for extraction is recorded, as well as the success (or failure)
of the process and of the involved subcomponents. In total, 28 features belong
to this class.

3. Predicting Plan Cost

This section is devoted to describe the approach that we use to predict the cost of
a plan solving a given planning task. Our aim is to provide a domain-independent
predictor, i.e., a predictor that can be used for any (unseen) planning task that is
represented using the PDDL language.

3.1. Training Instances

Designing a model that predicts the cost of a solution plan raises the question of what
a good cost to be predicted is. We decided to train the predictive model to predict the
cost of the best known solution of a training planning instance. For each planning in-
stance, we considered the best known quality (lowest cost) of a plan, when available, by
looking at the data stored in “Planning.Domains”.2 Otherwise, we considered the best
solution generated by a set of selected state-of-the-art planners using 1800 CPU-time
seconds for each run. Such planners are: LAMA (Richter & Westphal, 2010), Fast

2This can be downloaded from the http://planning.domains/ website.
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Table 1.: Average CPU-time (and standard deviation) needed to extract features from
the considered classes, on the training instances.

Class Avg. CPU-time Std. Dev

PDDL 0.2 1.0

Fast Downward 10.0 30.1

LAMA probing 1.5 0.5
LPG preprocessing 1.2 4.7

Torchlight 1.3 17.0

SAT representation 286.8 623.6

Downward (Helmert, 2006), LPG (Gerevini, Saetti, & Serina, 2006, 2011b), Mada-
gascar (Rintanen, 2012), FF (Hoffmann & Nebel, 2001), Arvand (Nakhost, Müller,
Valenzano, & Xie, 2011), Probe (Lipovetzky & Geffner, 2011). They were chosen be-
cause they exploit very different planning techniques, and can therefore potentially
provide solution plans of significantly different quality – increasing the possibility of
obtaining good quality plans on the considered instances.

The data used to train the predictive model come from a large set of planning
domains. Indeed, we collected as many PDDL classical planning instances as possible
with the only restriction being that they were supported (but not necessarily solved) by
at least one of the planning engines used for training purposes. We included instances
from the following sources: (i) International Planning Competition (IPC)-98 and IPC-
00; (ii) IPC deterministic tracks from 2002 to 2011; (iii) learning tracks of IPC-08
and IPC-11; (iv) FF benchmark library; (v) Fast Downward benchmark library; (vi)
UCPOP Strict benchmarks; and (vii) Sodor and Stek domains used by Roberts et
al. (2008). From the above-mentioned benchmark sets, we removed the instances of
domains used in the testing set, that includes the IPC-14 and IPC-18 deterministic
track benchmarks. In total, more than 7, 000 planning instances were used to derive
the training data set.

3.2. Planning Features

Table 1 shows the average CPU time and standard deviation that was needed to extract
the features from the corresponding class on the training instances. For instance, all
the features from the PDDL class are extracted usually in 0.2 CPU-time seconds. It
is easy to observe that the SAT features require a significant amount of CPU time
(as well as memory resources, not shown in the table) to be extracted. Further, in a
large number of cases the extraction process failed for this class of features. Therefore,
we decided to remove this class of features, and the corresponding features from the
Success and timing set, from the rest of our analysis. Thus, the final set we consider
consists of 182 features that can be extracted on average in a matter of few CPU-time
seconds.

In order to understand the informativeness of features, and to highlight relevant
features for the task of predicting the cost of a solution plan, we used the RELIEF
algorithm (Robnik-Sikonja & Kononenko, 1997) provided as part of the well-known
WEKA tool (Hall et al., 2009). RELIEF uses a filter-based method approach to rank
features according to their informativeness with regards to the predictive task consid-
ered. The approach highlighted that features from the PDDL and the Fast Downward
sets are among the most informative. In particular, for the PDDL set, the number of
goals and the number of objects are deemed to be very relevant. For the Fast Down-
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best classifier: weka.classifiers.meta.AdditiveRegression

arguments: [-S, 1, -I, 6, -W,

weka.classifiers.trees.RandomForest, --, -I, 22, -K, 0, -depth, 11]

metric: rootMeanSquaredError

Figure 1.: The classifier configuration identified by Auto-WEKA for predicting the
quality of plans, on the considered training instances.

ward set, the maximum and mean SAS+ variable domain size, and the total mutex
groups size play an important role, according to the RELIEF analysis.

3.3. Building the Predictor

For generating the predictive model, we used the WEKA tool. We used the Auto-
WEKA tool (Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown, 2017) for selecting
the best technique and the best configuration of the corresponding parameters on the
training data. Auto-WEKA is an approach that, given a training set and a predictive
task, explores all the classifiers provided by WEKA, and their parametrisation, in
order to identify the configuration that leads to the best performance. Auto-WEKA
was run for 2 CPU-time days in a 10-fold cross-validation on all the considered training
instances, with the goal of identifying the best predictor that minimises the root
mean squared error. The resulting predictive model that we obtained uses additive
regression models based on random forests, and showed better performance (on the
training instances) than those of the manually assessed predictive models. We therefore
decided to use it for the rest of our analysis. The specific configuration identified by
Auto-WEKA is shown in Figure 1, and can be straightforwardly exploited in WEKA.

The resulting predictor, assessed on the training instances using 10-fold cross vali-
dation, had a correlation coefficient of 0.921, a mean absolute error of 20.5, and a root
mean squared error of 167.8. The results on the testing set, that is used also to assess
the usefulness of the proposed adaptive heuristics, will be discussed in Section 5.

Regarding the CPU time needed by the identified model for generating a prediction,
we observe that it is negligible. In our experiments it has never taken more than 0.1
CPU-time seconds to provide a prediction, given the extracted features.

4. Exploiting Potentially Inaccurate Predictions

Consider a planning task Π for which we know, thanks for instance to the predictor
previously described, an approximation of the cost (or the length) of a solution plan
solving Π. The question is: how can we make the search for a plan in a planning engine
capable of exploiting such an estimate? At same time though, how can we take into
account that such an estimate can potentially mislead the search for a solution?

We approach these questions through the lens of heuristic forward search, and study
ways to make a A* search sensitive to an estimate B approximating the cost of a plan.

Similarly to the standard functioning of A*, we collect the cost g(n) to the node n as
the cost of the plan to go from the search tree root to n. Then we collect two heuristic
estimates of the cost from n to the goal, namely hδ(n) and hs(n), respectively. Both
hδ(n) and hs(n) are functions that return an estimate of the actual cost, but do so
with different purposes.
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• hδ(n) is used for assessing whether the prefix under exploration has trespassed
the estimate B given as an input. We call this heuristic the anchor estimate.
• hs(n) is used to effectively guide the search. We call this heuristic the guiding

estimate.

As we will see in the following, hδ(n) is used (in combination with g(n)) as a means
to approximate when the plan prefix will likely exceed B, and for this reason, we use
an estimate that computes a lower bound of the the cost to reach a goal for a given
state, i.e., we adopt an admissible heuristic. Instead, for hs(n), we admit an estimate
that is not guaranteed to be admissible, but potentially more informed, i.e., we adopt
an inadmissible heuristic.

We use these elements in a weighted A* setting (Pohl, 1970), and, much as it
happens in any best-first search, organise the search for a solution by expanding the
node n in the frontier that minimises the cost function f(n) = g(n) + w · hBound(n).
As a difference w.r.t. traditional use of heuristics in search, our function hBound(n) is
not a proper heuristic function in that it is not aimed at predicting the distance to the
goal, but it is devoted at steering the search in a way that is dependent on the input
bound B whilst taking into account the distance to the goal. We call this function the
adaptive heuristic. This section discusses four variants of the aforementioned adaptive
heuristic: two of these act on the guiding estimate in an additive way; the third and
the fourth variants act by modifying the guiding estimate in a more profound manner.
These can indeed act both by amplifying or decreasing the contribution of the guiding
estimate. Because of this, we classify our variants into unidirectional and bidirectional
adaptive heuristics.

4.1. Unidirectional hBound(n)

The main idea at the basis of the unidirectional hBound(n) variants is that of modifying
the value of the guiding heuristic by adding a positive amount when the search seems
to go towards a direction that does not satisfy the input bound. Both variants make use
of the anchor estimate hδ(n) to weigh this modification differently. This is summarised
in what we call ∆(n).

More precisely, let n be a node in the search, ∆(n) measures the discrepancy between
the evaluation of the search node n against the input bound B, i.e., the difference
between B and the sum g(n) + hδ(n) of the cost g(n) accumulated so far, and the
expected cost hδ(n) to the goal.

∆(n) = B − (g(n) + hδ(n)) (1)

The first adaptive heuristic that we present is called hpenaltyB (n), it is formulated as
follows:

hpenaltyB (n) = hs(n) +

{
|∆(n)| if B < (g(n) + hδ(n))

0 otherwise
(2)

Heuristic hpenaltyB (n) aims at favouring exploration of all those search nodes that
can lead to a solution which is better than the given bound. Intuitively, this heuristic
is assuming that the provided bound is an overestimation of the cost of a good quality
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solution plan. To obtain the described behaviour, for whatever is beyond the expected

bound, hpenaltyB (n) sums the ∆(n) value to the heuristic. As this search will discourage
the explorations of nodes beyond a given threshold, we expect that this will steer the
search on shallower solutions. Note that, this measures will not endanger the quality
of the plan if the estimate is not good enough. At worst, it will do more search if the
predicted bound is too small.

The second adaptive heuristic that we propose is called hdeltaB (n):

hdeltaB (n) = hs(n) + |∆(n)| ×max

(
1− g(n)

B
, 0

)
(3)

The main objective of hdeltaB is to focus the search towards those nodes whose distance
to the initial state is close to the bound. It does so by discouraging with a higher
penalty those nodes with lower g-values. Once the distance from the initial state
saturates the bound, the discrepancy is basically de-activated. This policy is more

reactive than hpenaltyB (n) in the sense that the value of the heuristic can be modified
for a larger number of situations. This may result in a more profound impact on the
performance of the system. If the bound is a large overestimation of the actual solution
quality, then it is likely that more expensive solutions are returned.

4.2. Bidirectional hdiscountB (n)

Our third adaptive heuristic proceeds along another dimension since it considers a
multiplicative in place of an additive factor, and it has effect on both sides of the
bound. As the other adaptive heuristics, this variant also keeps a handle on the anchor
estimate, but uses it to discount the weight of the heuristic in ranking nodes in the
frontier. This adaptive heuristic comes in a basic and extended version; the extended
version makes use of a smoothing parameter. This parameter aims at attenuating the
role of the adaptive heuristic when the performed exploration of the search space seems
to indicate that the input bound is too tight.

More formally, the new adaptive heuristic is defined as follows:

hdiscountB (n) = hs(n) ·
(

B

g(n) + hδ(n)

)
(4)

The work done by hdiscountB (n) is more disruptive than the work of the other proposed
heuristics, because it can also nullify the heuristic value. From an abstract standpoint,
it accelerates the search towards the nodes that are close to B (the provided predicted
cost), and from that point on-wards, it promotes an exploration that is more sensible
to the g-values (the heuristic contribution is diminished in the minimisation). In other
words, hdiscountB (n) discounts the cost of all plan prefixes of cost less than the input
bound B. This is obtained by amplifying the contribution of the heuristic for all those
search nodes n with g(n) + hδ(n) < B, and diminishing the heuristic value of those
nodes n with g(n) + hδ(n) > B. Note that, since hδ(n) is an admissible function,
g(n) + hδ(n) plays the role of an optimistic predictor for the cost of the solution plan
that the search would obtain through the candidate node n.

It is easy to see that the overall behaviour of the search heavily depends on how
bound B relates to the solutions space of the problem. When B is much lower than
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the optimal cost, the second factor in (4) gets very small, and therefore we expect the
search to expand more nodes; most of the search will be indeed done favouring nodes
with lower g-values. That can have a very negative impact on runtime performance.
Instead, when B is too large (much larger than the optimal cost), the second factor
of (4) makes the search greedier, because it favours the indication provided by our
guiding heuristic. In general this can reduce the number of expanded nodes, but it can
also compromise the quality of the obtained solution. Nevertheless, we experimentally
observed that having B over-estimating the optimal cost does not worsen solution
quality significantly, especially when B is only slightly larger than the cost of an
optimal plan.

To overcome the issue related to using a too tight bound B, we devise a further
exponential modifier in the definition of hdiscountB (n), namely prate. The aim of this
modifier is to alleviate the effect of the bound on the heuristic by taking advantage
of the information acquired whilst searching. More precisely, prate is defined as the
fraction of expanded nodes that have a value for g(n) + hδ(n), where hδ is admissible,
that exceeds bound B:

prate =
#{n ∈ {expanded nodes } | g(n) + hδ(n) > B}

#{expanded nodes}

This way, the more expanded nodes exceeded B, the closer the second factor of (4)
gets to one. This leads to the following variant:

hdiscount-prB (n) = hs(n) ·
(

B

g(n) + hδ(n)

)(1−prate)

(5)

We observe that when prate increases, the exponent of the second factor tends to
zero, and the second factor itself becomes irrelevant (i.e., close to 1).

The described adaptive heuristic functions exploiting B can inform the search in
a way that is in contrast with the heuristic evaluation of the original function hs.
For instance, consider B = 7, w = 1 and suppose that there are two nodes on the
search frontier n1 and n2 such that hs(n1) = 5, hδ(n1) = 3, g(n1) = 1, hs(n2) = 9,
hδ(n2) = 7, and g(n2) = 1. Algorithm wA* using hs prefers n1 to n2, while wA* with
hdiscountB (n) prefers n2 because hdiscountB (n)(n1) = 5 · 7

3+1 = 8.75 and hdiscountB (n)(n2) =

9 · 7
7+1 = 7.875. A situation like this could happen, for instance, in a logistic problem

where we are at a location where we can reach the target via two paths; one of such
paths appears to be better according to hs, but it is actually not viable to the end
because, along this path and differently from the other longer path, there is no refuel
station, and the target location can be reached only if at least one refuel is done before
a maximum number of moves. The predicted cost B could alter the hs-values towards
the longer but safer path.

5. Experimental Analysis

The aim of our experimental analysis is to assess the usefulness of the proposed adap-
tive heuristics in a state-of-the-art classical planning system. In what follows we in-
troduce the experimental setting and the evaluation metrics, and then report on our
experimental findings.
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lazy_wastar([hff],preferred=[hff],w=5) # Single heuristic baseline
lazy_wastar([hlm],preferred=[hlm],w=5) # Single heuristic baseline
lazy_wastar([hff,hlm],preferred=[hff,hlm],w=5) # Pair heuristics baseline

Figure 2.: Fast Downward code for the three considered baselines.

5.1. Experimental Settings

We implemented the adaptive heuristic described in the previous section within the
Fast Downward (FD) planning system (Helmert, 2006). We focus on the setting of FD
where the search is carried on using wA* with w = 5, and up to two heuristics are used
in alternation. This is an approach commonly exploited within classical planners; it is
also exploited as one of the search episodes of the LAMA planning system (Richter &
Westphal, 2010).

As our anchor heuristic, we use the admissible heuristic hδ = hmax. As a guiding
heuristic, we use one of the following inadmissible heuristics: {hFF, hLM} (Hoffmann
& Nebel, 2001; Richter & Westphal, 2010). In our experiments we compare the effect
of using any combination of the aforementioned inadmissible heuristics by comparing
the performance obtained with the same search without the adaption enabled. Figure
2 details the exact configuration of the FD system with the different inadmissible
heuristics. For the configuration with more inadmissible heuristics, we run experiments
using the adaptive heuristic to either one of them, or both of them. A first set of
experiments is devoted to investigate the best set of heuristics to use, and the best
heuristic to be modified using the provided prediction B. Then we focus our analysis
on the best heuristic and report on a domain by domain evaluation.

Our benchmarks involve 26 domains from the satisficing track of the 2014 and 2018
International Planning Competitions (IPC). For each considered domain, we have 20
instances giving us a total of 520 instances. For each instance of the considered bench-
marks (that are different from the problems used to train the predictor), our predictor
is provided with features extracted from the problem, and it returns an estimate of
a the cost of a valid solution solving such an instance.3. This predicted cost plays
the role of B in our adaptive heuristics. However, the plan cost prediction made on a
given planning instance can at times be grossly wrong, and this can harm the search
substantially. To overcome this problem, our system employs a simple preprocessing
step that tests whether the predicted value B is lower than the value of the admissible
heuristic hLM-Cut (Helmert & Domshlak, 2009) computed in the initial state. If B is
lower, the prediction underestimates even the cost of a lower bound for an optimal
solution of the considered problem, and so we do not use any adaptive heuristic (mean-
ing we are in the baseline case). While if B is higher or equal to the value of hLM-Cut,
then an adaptive heuristic is used.

All experiments were run on an Intel Xeon Gold 6140M CPUs with 2.30 GHz. For
each instance we set a cutoff time of 1800 seconds, and the memory was limited to
8 GB. To account for disturbance and randomness, every run has been repeated five
times and the median result has been reported.

3The actual predicted costs and the model parameterisation can be found at

https://bitbucket.org/maurovallati/icaps-2020/
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5.2. Evaluation Metrics

Our experimental analysis considers a range of different metrics to assess the impact
of the presented approaches. In particular, we consider:

PAR10. The Penalised Average Runtime is a metric usually exploited in algorithm
configuration techniques, where average runtime is calculated by assigning to the
runs that did not find a plan ten times the cutoff time (Hutter, Hoos, Leyton-
Brown, & Stützle, 2009). Intuitively, PAR10 provides a good tradeoff information
between runtime and coverage.

score-T. This is the IPC runtime score, as defined in the 2014 edition of the Inter-
national Planning Competition (Vallati, Chrpa, & McCluskey, 2018). It is calcu-
lated as follows: for a planner C and a problem p, Score(C, p) is 0 if p is unsolved,
and 1/(1 + log10(Tp(C)/T ∗p )) otherwise (where T ∗p is the minimum time required
by the compared systems to solve the problem). The IPC runtime score of a
planner is given by the sum of the scores achieved on each considered instance.

score-Q. The IPC quality score of a planner C and a problem p is calculated as:
Score(C, p) is 0 if p is unsolved, and Q∗p/Qp(C) otherwise (where Q∗p is the quality
of the best solution found by the compared systems to solve the problem, and
Qp(C) is the quality of the solution found by the C planner). The IPC quality
score of a planner is given by the sum of the scores achieved on each considered
instance.

Coverage. This reports the number of problem instances solved within the given
cutoff time.

avg-T. The average runtime needed by the planner to solve the benchmark instances.
The average is calculated considering instances solved by all the compared ap-
proaches.

avg-C. The average plan cost of generated solutions. The average is calculated con-
sidering instances solved by all the compared approaches.

The IPC score of a given planner is relative to the performance of the other consid-
ered planners; instead, PAR10 is an absolute metric value and it does not take the
performance of other competitors into account.

In order to understand the impact of the proposed approaches, in domain-by-domain
comparisons, the following metrics are also considered:

• δ. This is an indicative measure of how close/distant the predicted value is
with regards to the found solution. It is calculated as (B − S′)/S′, where S′ is
the quality of the solution found by the baseline system. This metric indicates
the accuracy of the provided predictions, with regards to the solution that the
approach would have found. Closer to 0.0, more accurate the predictions are.

• exp(X)
exp(Y) . The expanded note ratio between a system X and a system Y . This

gives an indication of the impact of the considered techniques on the exploration
of the search space.

It is hard to define what the perfect prediction should be. One may argue that the
cost of the optimal plan is a perfect prediction, but it depends on the way in which the
prediction is exploited. Our intuition is that the value of a prediction has to be related
to the planning approach that has to exploit such prediction: it may be the case that
using the optimal plan cost could make finding a solution significantly harder for a
given search technique. Also, the value of a prediction cannot be directly related to the
cost of the solution that the approach would have found without using such prediction:
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Table 2.: Performance achieved by each search configuration with or without the use
of the estimate. Each search configuration uses wA* with w = 5 using the heuristic(s)
denoted by their aliases where h(B), with h ∈ {hFF, hLM}, denotes the adaptive heuris-
tic obtained using an approach between discount, discount-pr, delta and penalty in
which hs = h. Results are presented in terms of coverage. Bold results denotes the
best configuration for each adaptive approach.

Coverage
Search configuration

hFF(B) hLM(B) hFF(B),hLM hFF,hLM(B) hFF(B),hLM(B)

discount 183 40 252 234 187
discount-pr 214 163 264 246 223
delta 216 171 261 243 247
penalty 179 170 220 242 224

Baseline 214 170 234 234 234

this is because the use of a prediction modifies the way in which the search space is
explored. Since our aim is to provide a prediction that helps the search approach in
findings solutions, we decided to evaluate the quality of a prediction according to how
close it is to the cost of a plan that will then be found by the approach that is exploiting
such prediction.

5.3. Results

We are now turning our attention to the results of the performed experiments.

5.3.1. Choosing the Guiding Heuristic

As hinted at above, our first set of experiments evaluates the effect of our adaptive
heuristics by varying the guiding heuristic. To this end, we run wA* across all pos-
sible configurations and compare its performance against the very same search with
the adaptation disabled. Table 2 summarises the coverage for each considered config-
uration. (B) indicates which heuristic is modified through the given adaptive schema.
Overall, it is easy to observe that the best performance are achieved when two heuris-
tics are used.

More precisely:

• if –hFF(B),hLM– is used, then each adaptive approach performs better with
respect to the baseline, except for penalty;
• if –hFF,hLM(B)– is used, then each adaptive approach performs better with

respect to the baseline;
• if –hFF(B),hLM(B)– is used, then each adaptive approach performs worse, with

respect to the baseline, except for delta;

Given the presented results, we focus our attention on the –hFF(B),hLM– configu-
ration in what follows. For the sake of conciseness, we simplify our notation:

• discount-pr denotes wA*, with w = 5 and the pair –hFF(B),hLM– as heuristics,

where hFF(B) = hdiscount-prB is configured in a way that hs = hFF and hδ = hmax;
• discount denotes wA*, with w = 5 and –hFF(B),hLM– as heuristics, where
hFF(B) = hdiscountB is configured in a way that hs = hFF and hδ = hmax;
• delta denotes wA* with w = 5 and –hFF(B),hLM– as heuristics, where hFF(B) =
hdeltaB is configured in a way that hs = hFF and hδ = hmax;
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Table 3.: Performance achieved by the Baseline and by the adaptive heuristics on the
complete set of considered benchmarks.

Approach Coverage avg-C score-Q PAR10 score-T

discount-pr 264 388.8 243.2 8948.8 232.9
discount 252 389.6 230.5 9356.0 213.3
delta 261 391.6 236.8 9055.2 225.5
penalty 220 378.5 214.8 10452.4 182.8

Baseline 234 381.6 223.9 9970.0 207.5

• penalty denotes wA* with w = 5 and –hFF(B),hLM– as heuristics, where

hFF(B) = hpenaltyB is configured in a way that hs = hFF and hδ = hmax.

As a baseline, we consider a wA* search, with w = 5, using –hFF,hLM– as heuristics
in a multi-queue fashion.

5.3.2. Overall

Table 3 summarises the results achieved by our adaptive heuristics and the Baseline.
Compared to the baseline, the performance of the search engine improves by exploiting
the predicted plan costs. This happens in particular with the two variants of discount
and with delta. Instead, penalty reduces the coverage and the speed substantially.
This is not surprising though: as we have seen in the previous section, penalty gives
lower priority to those nodes leading to prefixes of higher predicted cost (i.e., those
where B < (g(n)+hδ(n))). On the other hand, while discount and delta cause a slight
increase on the average cost of the plans, penalty tends to produce plans of higher
quality. This is reflected in the average cost of plans (avg-C in Table 3): it is worth
noting that the IPC quality score (score-Q in the Table) of penalty is the worst among
the considered approaches, because such metric takes coverage into account as well.

Both variants of discount, and the delta, push the algorithm deeper in the search
tree, as suggested by the generally higher average plan cost. On the other hand, this
allows discount-pr to improve coverage and also runtime of about +12%. The negative
impact on the average cost seems to remain very limited on average (we have an
increase of approximately 0.02%).

5.3.3. penalty versus Baseline

Table 4 shows the performance by domain of Baseline compared to penalty. In this
table, and in all the subsequent tables where domain-by-domain results are presented,
we use P to refer to the system exploiting the given prediction B, and we use wA*
to indicate the baseline approach. By looking at the results presented in Table 4, it is
apparent that the penalty does not behave particularly well in terms of coverage and
speed, yet, when the predicted cost is rather close to the cost of the found solution,
the penalty approach tends to produce solutions of good quality. In many cases, it
outperforms the baseline in terms of quality of the generated solutions. Conversely, for
all the domains where the difference between the predicted plan cost and the actual
plan cost is more pronounced, for instance in Caldera and Spider, the quality of the
solutions identified by penalty is severely affected.
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Table 4.: Comparison by domain of the penalty performance compared to Baseline.
Results are presented in terms of number of instances where the predictions have been
used (Used). Domains where predictions are never used are omitted.

Domain Used
Cov.

P
Cov.
wA*

Solved
P

Solved
wA*

δ
exp(P)

exp(wA*)

score-Q
P

score-Q
wA*

avg-C
P

avg-C
wA*

score-T
P

score-T
wA*

avg-T
P

avg-T
wA*

Barman 20 5 5 0 0 0.15 1.0 5.0 5.0 148.6 148.6 5.0 5.0 813.9 799.5

caldera 20 19 15 4 0 5.95 1.7 18.8 15.0 27.1 26.5 17.9 14.5 89.9 38.9

caldera-split 20 4 6 0 2 0.69 0.9 4.0 5.8 85.5 91.5 3.9 5.9 5.9 6.6

CaveDiving 13 7 7 0 0 -0.75 1.0 7.0 7.0 110.0 110.0 6.9 7.0 49.1 48.4

Childsnack 20 1 2 0 1 -0.29 1288.9 1.0 2.0 49.0 49.0 0.3 2.0 1304.9 6.2

CityCar 20 6 7 0 1 0.18 0.4 6.0 6.6 114.3 127.2 5.4 6.5 144.5 272.8

data-network 19 0 0 0 0 na na 0.0 0.0 na na 0.0 0.0 na na

flashfill 4 11 11 0 0 -0.97 1.0 11.0 11.0 436.2 436.2 11.0 11.0 63.3 60.2

Floortile 5 2 2 0 0 -0.6 1.0 2.0 2.0 76.0 76.0 2.0 2.0 3.8 3.5

GED 20 20 20 0 0 3.05 1.0 20.0 20.0 40.0 40.0 19.9 20.0 10.9 10.8

Hiking 20 20 20 0 0 -0.25 1.9 20.0 15.6 43.1 55.9 17.6 18.3 19.9 9.6

Maintenance 20 0 0 0 0 na na 0.0 0.0 na na 0.0 0.0 na na

nurikabe 20 11 11 0 0 1.2 1.0 10.9 11.0 75.1 74.5 10.9 11.0 125.3 116.2

Openstacks 20 20 20 0 0 0.01 7.1 20.0 19.7 190.4 193.2 13.0 20.0 95.5 9.0

organic-synthesis 20 3 3 0 0 64.75 1.0 3.0 3.0 4.0 4.0 3.0 3.0 0.1 0.1

organic-synthesis-split 10 9 11 0 2 0.2 0.4 9.0 11.0 284.2 284.2 8.9 10.1 29.3 95.2

Parking 20 20 20 0 0 0.32 1.0 20.0 20.0 94.6 94.8 19.8 19.8 142.0 142.3

settlers 20 0 7 0 7 na na 0.0 7.0 na na 0.0 7.0 na na

snake 20 3 3 0 0 0.77 1.0 3.0 3.0 45.7 45.7 3.0 3.0 72.6 72.7

spider 20 18 16 3 1 2.92 2.3 16.7 15.8 51.2 47.1 13.2 15.4 435.2 150.9

termes 20 2 4 0 2 -0.47 3.7 2.0 3.8 103.0 113.0 1.4 4.0 287.4 76.5

Tetris 20 4 4 0 0 0.78 1.0 4.0 4.0 115.5 115.5 4.0 4.0 584.0 578.4

Thoughtful 20 18 15 3 0 0.11 4.1 17.9 14.4 90.6 94.9 15.7 14.5 8.7 2.7

Transport 20 2 2 0 0 1.19 1.0 2.0 2.0 2478.5 2478.5 2.0 2.0 644.6 636.5

Visitall 20 5 13 0 8 0.08 0.5 5.0 12.9 1691.2 1725.0 5.0 12.7 49.0 132.1

TOTAL 451 220 234 10 24 1.9 1.46 218.2 227.5 374.4 377.2 199.4 228.4 152.9 118.5

Table 5.: Comparison by domain of the delta performance compared to Baseline.
Results are presented in terms of number of instances where the predictions have
been used (Used). Domains where predictions are never used are omitted.

Domain Used
Cov.

P
Cov.
wA*

Solved
P

Solved
wA*

δ
exp(P)

exp(wA*)

score-Q
P

score-Q
wA*

avg-C
P

avg-C
wA*

score-T
P

score-T
wA*

avg-T
P

avg-T
wA*

Barman 20 19 5 14 0 -0.05 0.1 18.3 5.0 177.6 148.6 19.0 2.4 74.9 799.5

caldera 20 13 15 0 2 6.73 8.9 12.6 14.7 24.1 24.1 9.0 15.0 237.9 14.8

caldera-split 20 6 6 0 0 0.47 3.4 5.8 5.8 105.0 105.0 5.1 5.6 384.1 116.6

CaveDiving 13 7 7 0 0 -0.75 1.0 7.0 7.0 110.0 110.0 6.9 7.0 50.1 48.4

Childsnack 20 5 2 5 2 -0.41 na 5.0 2.0 na na 5.0 2.0 na na

CityCar 20 8 7 2 1 -0.24 0.3 6.1 7.0 190.0 120.5 7.9 5.4 89.6 229.2

data-network 19 1 0 1 0 0.21 na 1.0 0.0 na na 1.0 0.0 na na

flashfill 4 11 11 0 0 -0.97 1.0 11.0 11.0 436.2 436.2 11.0 11.0 60.8 60.2

Floortile 5 2 2 0 0 -0.6 1.0 2.0 2.0 76.0 76.0 2.0 2.0 3.8 3.5

GED 20 20 20 0 0 2.83 0.1 18.3 19.7 43.6 40.0 19.9 16.3 1.3 10.8

Hiking 20 20 20 0 0 -0.46 3.3 18.8 19.8 59.4 55.9 17.9 18.0 30.4 9.6

Maintenance 20 1 0 1 0 3.91 na 1.0 0.0 na na 1.0 0.0 na na

nurikabe 20 11 11 2 2 1.4 1.6 10.8 10.7 68.0 68.6 10.6 10.8 1.2 1.2

Openstacks 20 20 20 0 0 -0.0 2.0 20.0 20.0 193.2 193.2 17.7 19.8 25.7 9.0

organic-synthesis 20 3 3 0 0 64.75 2.5 3.0 3.0 4.0 4.0 3.0 3.0 0.2 0.1

organic-synthesis-split 10 11 11 0 0 0.09 0.8 11.0 11.0 324.2 324.2 10.9 10.6 301.8 310.9

Parking 20 20 20 0 0 0.03 1.2 15.8 20.0 121.0 94.8 18.0 18.9 172.1 142.3

settlers 20 7 7 0 0 -0.84 0.7 6.8 6.9 596.4 582.1 6.8 6.0 167.4 288.4

snake 20 7 3 4 0 0.11 0.0 6.3 3.0 62.0 45.7 7.0 1.2 2.3 72.7

spider 20 16 16 1 1 3.08 3.4 14.6 15.8 51.2 46.9 11.5 15.3 435.1 98.2

termes 20 4 4 0 0 -0.53 0.7 4.0 3.9 131.3 133.3 4.0 3.5 42.3 60.8

Tetris 20 5 4 2 1 0.15 1.0 4.2 4.0 166.0 119.0 4.9 3.8 349.3 493.3

Thoughtful 20 19 15 4 0 0.07 3.0 18.6 14.5 93.7 94.9 17.2 14.4 5.9 2.7

Transport 20 2 2 1 1 -0.07 0.1 1.4 2.0 6295.0 2466.0 2.0 1.5 47.2 330.9

Visitall 20 13 13 2 2 -0.16 1.1 12.6 12.8 3200.7 3139.2 11.9 11.8 569.1 487.8

TOTAL 451 261 234 39 12 1.4 0.61 246.0 231.7 512.9 485.6 241.2 215.0 160.3 137.1

5.3.4. delta versus Baseline

Table 5 shows the domain-by-domain performance comparison between delta and the
baseline. Overall, delta has a very positive impact on coverage, and its use can lead to
a substantial reduction of node expansions (the ratio is well below 1). The reduction
is well spread across all benchmark domains and, as it should be expected, it bumps
up only when the δ value is particularly large (for instance in organic-synthesis and
caldera). However, it seems that this adaptive heuristic is quite robust in handling
grossly inaccurate predictions. Also the results concerning the cost of the found so-
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Table 6.: Comparison by domain of the discount performance compared to Baseline.
Results are presented in terms of number of instances where the predictions have been
used (Used). Domains where predictions are never used are omitted.

Domain Used
Cov.

P
Cov.
wA*

Solved
P

Solved
wA*

δ
exp(P)

exp(wA*)

score-Q
P

score-Q
wA*

avg-C
P

avg-C
wA*

score-T
P

score-T
wA*

avg-T
P

avg-T
wA*

Barman 20 20 5 15 0 -0.08 0.1 18.7 5.0 203.0 148.6 20.0 2.4 63.4 799.5
caldera 20 13 15 1 3 6.93 8.4 12.7 14.6 22.7 23.0 9.4 15.0 139.7 9.4
caldera-split 20 6 6 0 0 0.61 3.8 6.0 5.4 95.0 105.0 4.0 5.7 483.2 116.6
CaveDiving 13 7 7 0 0 -0.75 1.0 7.0 7.0 110.0 110.0 7.0 7.0 48.1 48.4
Childsnack 20 3 2 2 1 -0.39 0.1 2.9 2.0 82.0 71.0 3.0 1.5 4.4 35.6
CityCar 20 9 7 2 0 -0.39 0.5 6.3 7.0 230.4 129.3 8.7 5.9 183.9 281.5
data-network 19 1 0 1 0 0.45 na 1.0 0.0 na na 1.0 0.0 na na
flashfill 4 11 11 0 0 -0.97 1.0 11.0 11.0 436.2 436.2 11.0 11.0 62.0 60.2
Floortile 5 2 2 0 0 -0.6 1.0 2.0 2.0 76.0 76.0 2.0 2.0 3.6 3.5
GED 20 20 20 0 0 3.1 0.2 18.9 18.6 39.0 40.0 20.0 16.7 1.8 10.8
Hiking 20 19 20 0 1 -0.48 2.7 17.3 19.6 59.6 55.3 14.7 18.9 16.1 9.7
Maintenance 20 1 0 1 0 3.91 na 1.0 0.0 na na 1.0 0.0 na na
nurikabe 20 12 11 3 2 1.49 5.2 11.8 10.7 67.3 68.6 11.5 10.7 1.7 1.2
Openstacks 20 20 20 0 0 -0.0 1.1 20.0 20.0 193.2 193.2 18.9 20.0 10.4 9.0
organic-synthesis 20 3 3 0 0 64.75 2.4 3.0 3.0 4.0 4.0 3.0 3.0 0.3 0.1
organic-synthesis-split 10 9 11 0 2 0.2 2.0 9.0 11.0 284.2 284.2 8.6 10.8 105.4 95.2
Parking 20 20 20 0 0 0.0 1.5 15.5 19.9 125.0 94.8 16.6 19.4 227.6 142.3
settlers 20 0 7 0 7 na na 0.0 7.0 na na 0.0 7.0 na na
snake 20 7 3 4 0 0.19 <0.1 6.6 3.0 54.0 45.7 7.0 1.2 2.7 72.7
spider 20 13 16 1 4 3.44 4.9 12.3 15.9 45.6 43.3 9.1 15.5 473.9 163.8
termes 20 4 4 0 0 -0.53 6.0 4.0 3.8 128.8 133.3 3.0 4.0 355.2 60.8
Tetris 20 8 4 5 1 0.37 1.4 7.3 4.0 133.7 103.0 7.7 4.0 428.4 366.4
Thoughtful 20 16 15 2 1 0.1 2.9 15.8 14.7 91.5 92.6 13.7 15.0 7.2 2.7
Transport 20 2 2 2 2 -0.04 na 2.0 2.0 na na 2.0 2.0 na na
Visitall 20 16 13 4 1 -0.2 0.5 15.7 12.8 3180.2 3174.0 15.5 11.0 220.8 479.4

TOTAL 451 252 234 43 25 1.5 1.35 237.6 230.0 504.1 495.7 228.3 219.5 141.6 127.1

Table 7.: Comparison by domain of the discount-pr performance compared to Baseline.
Results are presented in terms of number of instances where the predictions have been
used (Used). Domains where predictions are never used are omitted.

Domain Used
Cov.

P
Cov.
wA*

Solved
P

Solved
wA*

δ
exp(P)

exp(wA*)

score-Q
P

score-Q
wA*

avg-C
P

avg-C
wA*

score-T
P

score-T
wA*

avg-T
P

avg-T
wA*

Barman 20 20 5 15 0 -0.08 0.1 19.1 5.0 184.0 148.6 20.0 2.2 50.1 799.5

caldera 20 14 15 1 2 6.87 7.8 13.8 14.7 24.1 24.3 10.5 15.0 190.2 17.8

caldera-split 20 6 6 0 0 0.5 1.2 6.0 5.8 102.0 105.0 4.9 5.8 141.7 116.6

CaveDiving 13 7 7 0 0 -0.75 1.0 7.0 7.0 110.0 110.0 6.9 7.0 49.5 48.4

Childsnack 20 3 2 2 1 -0.39 0.1 2.9 2.0 82.0 71.0 3.0 1.5 3.2 35.6

CityCar 20 12 7 5 0 -0.36 0.4 9.2 7.0 229.0 129.3 11.8 5.6 161.3 281.5

data-network 19 1 0 1 0 0.54 na 1.0 0.0 na na 1.0 0.0 na na

flashfill 4 11 11 0 0 -0.97 1.0 11.0 11.0 436.2 436.2 11.0 11.0 60.2 60.2

Floortile 5 2 2 0 0 -0.6 1.0 2.0 2.0 76.0 76.0 2.0 2.0 3.9 3.5

GED 20 20 20 0 0 3.14 0.2 19.0 18.5 38.6 40.0 19.9 16.8 2.1 10.8

Hiking 20 20 20 0 0 -0.43 7.3 19.1 19.4 57.0 55.9 17.1 18.8 68.4 9.6

Maintenance 20 1 0 1 0 3.91 na 1.0 0.0 na na 1.0 0.0 na na

nurikabe 20 12 11 3 2 1.49 9.3 11.8 10.7 67.1 68.6 11.4 10.6 2.6 1.2

Openstacks 20 20 20 0 0 -0.0 1.1 20.0 20.0 193.2 193.2 19.4 19.8 9.4 9.0

organic-synthesis 20 3 3 0 0 64.75 2.4 3.0 3.0 4.0 4.0 3.0 3.0 0.2 0.1

organic-synthesis-split 10 11 11 0 0 0.09 1.1 11.0 11.0 324.2 324.2 10.6 10.8 305.9 310.9

Parking 20 20 20 0 0 0.0 1.5 15.4 19.9 124.9 94.8 16.7 19.4 225.8 142.3

settlers 20 5 7 0 2 -0.83 0.9 5.0 7.0 572.0 570.0 4.7 6.9 96.6 102.8

snake 20 7 3 4 0 0.22 0.0 6.6 3.0 54.0 45.7 7.0 1.2 3.0 72.7

spider 20 16 16 2 2 3.57 1.5 15.7 15.8 43.5 42.8 14.1 15.7 187.4 109.6

termes 20 4 4 0 0 -0.54 0.9 4.0 4.0 132.3 133.3 4.0 3.8 59.1 60.8

Tetris 20 8 4 5 1 0.34 1.1 7.3 4.0 133.0 103.0 7.8 3.9 393.2 366.4

Thoughtful 20 15 15 0 0 0.09 0.8 14.8 14.9 94.7 94.9 14.8 14.5 2.0 2.7

Transport 20 1 2 1 2 0.19 na 1.0 2.0 na na 1.0 2.0 na na

Visitall 20 15 13 4 2 -0.18 0.9 14.6 12.8 3098.2 3081.3 14.3 11.8 390.8 405.4

TOTAL 451 264 234 44 14 1.5 0.61 251.3 230.5 478.8 470.8 247.7 219.1 133.1 127.5

lutions are good, making exceptions for those situations where the adaptive heuristic
causes the system to behave in a much more greedy fashion. For instance the increase
of solution cost in the Transport domain is significant.

5.3.5. discount versus Baseline

Tables 6 and 7 report the performance of, respectively, discount and discount-pr with
regards to the performance of the considered baseline.
discount-pr is the approach that allows to deliver the best coverage performance.

Intuitively, considering also the performance of discount, this seems to be due to the
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penalty rate mechanism (the prate) that can limit some of the issues of discount. In
particular, looking at the expanded nodes, discount-pr tends to expanded a lower
number of nodes on average. This is easy to observe in domains such as caldera (both
versions), termes, and spider. Further, in Settlers the use of the penalty rate restricts
the difference of performance with the baseline to only 2 instances. Similarly in spi-
der, discount-pr solves two instances that were not solvable using the baseline, while
discount solves only one instance more.

5.3.6. Complementarity of adaptive heuristic

Our experimental findings highlight that the approaches complement each other. To
quantify this aspect we consider the coverage that would be obtained by a Virtual
Best Planner (VBP), i.e., by an oracle that for each instance is able to select the best
adaptive heuristic to use among the considered ones. Figure 3 reports such an informa-
tion comparing the VBP against all adaptive heuristics and the baseline. Figure 3 also
shows how for very small instances solved in less than one CPU-time minute, there is
no significant performance difference among the compared approaches; intuitively this
is due to the fact that for quickly solved instances, the use of the predicted cost does
not lead to the exploration of substantially different areas of the search space. When
more CPU time is used, and larger areas of the search space are explored, the three
best performing adaptive heuristics, i.e., delta, discount, and discount-pr obtain bet-
ter coverage results than the baseline when more than approximately 100 CPU-time
seconds are given to solve instances. In terms of coverage, the use of prate is clearly
useful in discount, and the benefit is evenly spread with regards to the given runtime
limits.

Figure 3.: Coverage over CPU time for wA* with hBound (with and without using
prate) and the Baseline (wA*) on all the considered benchmark instances.

We conclude our experimental analysis with an experiment on the performance of
discount-pr when used together with Greedy Best First Search (GBFS). This setting
is sometimes exploited by anytime planners to incrementally improve on a solution.
The baseline here is GBFS+wA*, where our approach is GBFS+ discount-pr. Note
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Table 8.: Comparison of the performance of wA* using the best adaptive heuristic
function (discount-pr) and the baseline wA* alone (top table) or after a run of GBFS
(bottom table). Results are presented considering the metrics introduced in Section
5.2.

Approach Coverage avg-C score-Q PAR10 score-T

discount-pr 264 478.8 251.3 8948.8 247.7

wA* 234 470.8 230.5 9970.0 219.1

GBFS+discount-pr 314 845.1 307.6 7472.9 299.4

GBFS+wA* 314 830.0 308.2 7524.8 290.1

that the second episode of search does not consider the solution found by GBFS during
search: GBFS is used only to help increasing instance coverage, since it can be the
case that GBFS solves instances that wA* alone can not. In other words, the cost
of the GBFS solution (if any) is not used instead of B in hBound. In both the con-
sidered configurations, if the second episode of wA* (with or without the considered
adaptive heuristic) is not completed, we penalise the runtime by an amount equal to
1800 seconds. As shown in Table 8, GBFS+wA* tends to provide slightly better qual-
ity solutions (1.7% better), but GBFS+discount-pr reduces runtime. This suggests
that there can be useful synergies between the proposed adaptive heuristic and the
GBFS settings. Moreover, the results presented in Table 8 indicate that there may
exist different ways for combining GBFS and wA* searches, different from the config-
uration exploited by state-of-the-art approaches like LAMA, that can lead to further
performance improvement.

5.4. Discussion

The results of the performed extensive experimental analysis, indicate that the use
of the adaptive heuristics can have a strong impact on the way in which the consid-
ered search framework works. Overall, Table 3 suggests that the discount-pr delivers
the best performance in terms of coverage and runtime, while penalty tends to be
significantly slower, but can generate plans of the average best quality. As it should
be apparent, the focus of the proposed adaptive heuristics is on exploiting the pre-
diction B in order to speed up the search process, and little consideration is given
to the quality of the generated solution. To better understand the significance of the
performance gain in terms of runtime, we ran a Wilcoxon signed-rank test (Wilcoxon
& Wilcox, 1964), which has been commonly used in AI planning for similar purposes
(see, for instance the work of Gerevini, Haslum, Long, Saetti, and Dimopoulos (2009);
Roberts and Howe (2009); Vallati et al. (2018)). The test indicated that the penalty,
with regards to runtime, is statistically worse (p < 0.05) than the considered baseline.
There is instead not a statistically significant difference between the baseline, and
the other introduced adaptive heuristics. This is despite a clear coverage gap between
some of the proposed adaptive heuristics, particularly discount-pr and delta. To bet-
ter understand this aspect, Figure 4 compares the number of nodes expanded by wA*
and each adaptive heuristics. The figure highlights that, beside the mentioned penalty
case, for all the other adaptive heuristics there is not a clear gain in terms of number
of expanded nodes.

We performed the Wilcoxon test also for comparing the VBP and the baseline,
and in this case the test indicates that the VBP is capable of delivering runtime
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Figure 4.: Scatter plot of the expanded nodes for the proposed approaches compared
to the baseline.

performance that are statistically better than those of the considered baseline. This
confirms the high degree of complementarity between the proposed adaptive heuristics.
An interesting point to explore in future work is therefore how to effectively combine
the proposed adaptive heuristics.

With regards to the quality of generated plans, it is easy to observe from Table 3, and
by the domain-by-domain analysis, that the use of the adaptive heuristics generally
reduces the quality of solutions. Only penalty is capable of generating solutions that
are, on average, better than those identified by the baseline approach.

Finally, regarding the relation between the predicted B and the actual found solu-
tion, we observed that for a large number of benchmark domains the predictions tend
to be reasonably accurate. Focusing on the results achieved by the best performing
adaptive heuristic discount-pr, and shown in Table 7: in 10 domains the prediction is
proved wrong by less than 40%; in 5 domains, however, predictions overestimate by
more than three times the cost of the solution found. Interestingly, the use of refor-
mulation on a domain model can lead to dramatically different predictions. Notable
examples are the Caldera and the Organic-synthesis benchmark domains: predictions
on the original domain model tend to be significantly wrong, but on the split models
are very accurate. Split models are generated by automatically performing the opera-
tor schema split approach (Areces, Bustos, Domı́nguez, & Hoffmann, 2014). Further,
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it seems that a large overestimation does not always lead to worse performance. In
GED and Maintenance, where predictions largely overestimate, the use of the pro-
posed adaptive heuristics is still beneficial. This is not the case in Spider, where the
large overestimation leads instead to significantly worse performance. It may indeed
be the case that the structure of the domain plays a pivotal role in the behaviour of
the proposed adaptive heuristics, when B is a large over- or under- estimation. The
usefulness of a provided prediction does not only depend on the fact that it accurately
identifies the quality of a solution plan that the considered system would have found.
As noted, the use of the prediction is modifying the way in which the search space is
explored, so the usefulness of a prediction also depends on the structure of the search
space for the considered domain, and on the way in which the search space is explored.
Our intuition is that a good prediction should point the search towards a region of
the search space that is “rich” of solutions, i.e. where many solutions can be found. In
that way, it would effectively support the search process.

Summarising, the proposed approaches demonstrated the be capable of exploiting
the knowledge provided under the form of predictions of the quality of a solution.
Some approaches are able to generate solutions faster, while others are more focused
on the quality of the generated plans. The results seem to indicate that having some
information about the quality of a solution plan, even if grossly inaccurate, is better
than having no information at all. Further, our analysis highlighted that given the high
level of complementarity of the proposed approaches, they can be fruitfully combined
in order to further extend the capabilities of a planning approach.

6. Related Work

In this section, we describe related work on (i) the use of feature-based models in
automated reasoning, (ii) feature-based predictive models in automated planning, (iii)
the use of bounds in automated planning, and (iv) the combination of inductive and
deductive approaches, pointing out some important differences between our approach
and the most related work.

6.1. Feature-based Predictive Models for Automated Reasoning

SATZilla is a prominent example of an algorithm portfolio designed for SAT (Xu et
al., 2008). It exploits regression techniques to build a predictor of the runtime of a
number of provided SAT solvers. For solving a new SAT problem, SATZilla computes
the values of a large set of features, predicts the performance of the considered SAT
solvers. The solvers are then ordered according to the predicted runtime, and executed
for the predicted time, following the established ordering. It should be noted that, for
the sake of overall performance, SATZilla exploits also pre- and backup solvers: the
former is used before extracting features, in order to quickly solve trivial instances.
The latter is run when all the selected solvers failed.

Similarly, Claspfolio (Gebser et al., 2011) exploits regression-based predictive mod-
els for selecting, among a range of predefined configurations of the well-known ASP
solver Clasp (Gebser, Kaufmann, Neumann, & Schaub, 2007), the best configuration
to minimise the runtime on a given ASP instances. Predictions are made according
to a set of features that are extracted from the considered ASP problem. Claspfolio
2 (Hoos, Lindauer, & Schaub, 2014) is an improved version of Claspfolio, that pro-
vides a modular architecture that allows for integrating several different approaches
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and techniques for extracting features, predicting solvers’ performance, and combine
solvers into a portfolio.

Matos, Planes, Letombe, and Marques-Silva (2008) propose an algorithm portfolio
solving the MaxSAT problem. According to the values of several features, it estimates
the runtime of each incorporated solver, and then solves the instance with the es-
timated fastest solver. The estimation is done using a (linear) model configured by
performing ridge regression (Marquardt & Snee, 1975).

Similarly, Pulina and Tacchella (2007) study an algorithm portfolio solving the QBF
problem. They identify some features of the QBF problem, and investigate the usage
of four inductive models to select the best solver to use according to the values of
the identified features. Maratea, Pulina, and Ricca (2014) applied a similar approach
for solving ASP problems: given a set of easy-to-compute features, extracted from the
given instance, the authors propose a classification-based approach for selecting the
most promising solver to run in order to minimise the required runtime.

In the abstract argumentation field, recent works (Cerutti, Thimm, & Vallati, 2020;
Vallati, Cerutti, & Giacomin, 2019) demonstrate how predictive models, based on
feature extracted by considering the directed graph representation of argumentation
frameworks, can be used to predict the runtime of solvers, and to predict some in-
teresting properties of the framework, such as the number of extensions of a given
type.

6.2. Features-based Approaches for Automated Planning

Approaches based on features for performing predictions have been studied for decades
in the planning field. Howe et al. (1999) build regression models based on five features
to predict performance of six planners, in order to identify the best to use for solving
a given classical planning instance. Subsequent work by Roberts et al. (2008) and
Roberts and Howe (2009) includes comprehensive features regarding PDDL statistics,
considered additional planners, and explored more complex models to predict the
runtime of planners on previously unseen instances. Fawcett et al. (2014) introduce
the set of features that is considered in this paper, and exploited them to generate a
domain-independent approach to accurately predict the runtime of planners.

IBaCoP (Cenamor, de la Rosa, & Fernández, 2016) is a planning system that con-
siders a large set of features, also including the SAS+ reformulation of a planning
instance, to combine planners into an instance-specific portfolio. A version of IBa-
CoP took part in the 2014 edition of the International Planning Competition (IPC),
and won the sequential satisficing track Vallati et al. (2018). On a similar note, Cen-
amor, Vallati, and Chrpa (2019) proposed a set of features to predict the performance
of planners on temporal planning problems. Some work has also focused on design-
ing features-based domain-independent predictors of the runtime of optimal planners
(Rizzini, Fawcett, Vallati, Gerevini, & Hoos, 2017).

Aside from predicting the runtime of planners on instances, for the sake of perform-
ing algorithm selection or combining solvers into portfolios, features have also been
used as a measure to compare planning instances, for supporting case-based planning
(Vallati, Serina, Saetti, & Gerevini, 2016), and for assessing the informativeness and
complexity of existing benchmarks (Cenamor & Pozanco, 2019).

Finally, Gerevini, Saetti, and Vallati (2015) propose a domain-specific approach,
based on a very limited set of features, for predicting the make-span optimal length
of a plan to boost SAT-based planning. Our approach is similar to the one proposed

21



by Gerevini et al. (2015), but we introduce a domain-independent predictor, that
leverages on a wide range of features.

A slightly different line of work introduced stratified sampling to predict the optimal
cost of a solution in regular search spaces (Lelis et al., 2016). The designed approach
can provide very accurate estimations, but is able to handle only search problems with
single and fully defined goal states – i.e. with cases where the goal is unique and fully
described and the search space is regular.

6.3. Bounds in Automated Planning

There has been a significant amount of work focusing on the problem of finding a solu-
tion constrained to satisfy a given bound, i.e. an hard constraint on the quality (cost)
of the solution. Beside the anytime search approach implemented in a large number of
the existing satisficing planning engines, Stern et al. (2014) introduce approaches to
quickly find a plan whose cost is within a given bound. Thayer and Ruml (2011) pro-
pose an algorithm for dealing with the so-called Bounded suboptimal search: given an
external bound B ≥ 1, the task is to find a solution whose cost is lower than or equal
to B × costopt, where costopt is the cost of the optimal solution. Percassi, Gerevini,
and Geffner (2017) propose an extension of the well-know planner LAMA where, at
each search episode, the cost of the incumbent solution is used as a bound to prune
the search space through an admissible heuristic.

6.4. Combination of planning and learning approaches

With regards to the combination of inductive and deductive approaches for deriving
implicit knowledge about the problem instance to be solved, an extensive overview of
the area (and of the more general field of learning for planning) is provided by Celorrio
et al. (2012). A notable approach that takes advantage of this combination include the
use of decision trees (de la Rosa, Celorrio, Fuentetaja, & Borrajo, 2011), to learn some
control knowledge that can be exploited during the exploration of the search space.
Krajnanský, Hoffmann, Buffet, and Fern (2014) introduced a technique for learning
rules to prune the search space, and Yoon, Fern, and Givan (2006) use learning to op-
timise a generalised heuristic approach for solving a given class of planning instances.
There is also an increasing interest in trying to exploit neural network to improve on
planning algorithms, (e.g., Shen, Trevizan, and Thiébaux (2019); Toyer, Thiébaux,
Trevizan, and Xie (2020)). For example the work done by Toyer et al. (2020) does so
by proposing the ASNET architecture, a layered graph representation whose scope is
that of approximating the state space by using a planning graph representation (Blum
and Furst (1997)). The training of the ASNET gives weights to propositional and ac-
tion atoms and blends them together in a convolutions neural network approach. The
authors show how this can be used to devise policies for generalising the problem of ac-
tion selection from smaller to larger problems, for both deterministic and probabilistic
planning tasks. The main difference with our work lies in the overall objective. Their
solution is indented to predict information that is to be used in a domain specific way,
while our predictor is domain independent; this introduces different challenges, but
we do not exclude that there could be ways to exploit some synergy between the two
approaches.
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7. Conclusions

Automated planning is a prominent Artificial Intelligence challenge, as well as being
a common capability requirement for intelligent autonomous agents. In this paper we
have addressed the problem of exploiting plan cost predictions, computed at prepro-
cessing through machine learning techniques, in order to improve planning performance
for propositional domains with action costs.

An effective use of these predictions during planning should take into account that
the predicted cost can be (even grossly) inaccurate with respect to the best quality plan
that a planning approach can found within a certain time limit. We have developed
a cost prediction model that is based on standard machine learning techniques using
a large set of instance features, and we have proposed a set of methods to exploit
the predictions made by our model in the context of wA*. The underlying idea is to
dynamically adjust, during search, the input weight w of the heuristic used in wA*,
taking into account the predicted plan cost, and preventing the search to be misguided
when the prediction is severely inaccurate.

We have carried out a large experimental evaluation demonstrating the usefulness of
the designed approaches. In particular, we observed that: (i) it is possible to exploit a
prediction of the cost of a solution to improve the planning performance either in terms
of runtime, or in terms of quality of the generated solutions, and (ii) the proposed
methods to guide the search process using a given prediction lead to very different
explorations of the search space, and this can be exploited by combining them into
a very effective portfolio. We observed that it is challenging to clearly specify what
is the most suitable value to be predicted: an accurate prediction of the cost of an
optimal plan can drive the search towards an area of the search space where it is
hard to find a solution; large under- or over- estimations can reduce the effectiveness
of the approaches. Nevertheless, our results suggest that, even if the prediction is
highly inaccurate, exploiting the prediction can be beneficial: in other words, some
(potentially wrong) knowledge is better than no knowledge.

We are interested in exploiting the highlighted complementarity of the introduced
techniques, possibly in a portfolio configuration, and we are interested in testing the
predicting model and the introduced policies in a more controlled environment, using
synthetically generated benchmarks (Roberts, Howe, & Ray, 2014). We are also inter-
ested in investigating an extension of our approach to predict and exploit makespan
and plan cost in PDDL metric-temporal planning (Fox & Long, 2003), taking also
into account potential issues of existing IPC benchmarks (Radzi, 2010), and in multi-
agent planning (Gerevini, Lipovetzky, Peli, et al., 2019; Gerevini, Lipovetzky, Percassi,
Saetti, & Serina, 2019; Nissim & Brafman, 2014). Moreover, we plan to explore novel
predictive approaches, that can make state-dependent predictions of the distance from
a goal state, rather a single than problem-dependent prediction of the cost of a good
quality solution. Finally, we are looking at improving the quality of predictions by
combining different predictors together.
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Shen, W., Trevizan, F. W., & Thiébaux, S. (2019). Learning domain-independent
planning heuristics with hypergraph networks. CoRR, abs/1911.13101 .

Stern, R., Felner, A., van den Berg, J., Puzis, R., Shah, R., & Goldberg, K. (2014).

Potential-based bounded-cost search and anytime non-parametric A*. Artificial
Intelligence, 214 , 1–25.

Thayer, J. T., & Ruml, W. (2011). Bounded suboptimal search: A direct approach
using inadmissible estimates. In Proc. of IJCAI 2011 (pp. 674–679).
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