Temperature and irradiance are the two most relevant factors determining the performance of microalgae cultures in open raceway reactors. Moreover, inadequate temperature strongly reduces the biomass productivity in these systems even if enough sunlight is available. Controlling the temperature in large open raceway reactors is considered unaffordable because of the large amount of energy required. This study presents an indirect method for temperature regulation in microalgae raceway reactors by optimizing the culture depth. First, the effect of the culture depth on the raceway temperature is analyzed for different seasons of the year. Afterward, a simulation study is presented where the proposed control approach is compared to the normal operation mode with constant volume in the reactor. This study is also extended to industrial scale. Relevant improvements on the temperature factor and biomass production are presented. The developed knowledge allows the improvement of the performance in open raceway reactors up to 12% without involving additional energy and costs, being a suitable solution for large industrial reactors that until now have no options for controlling the temperature.

Indirect regulation of temperature in raceway reactors by optimal management of culture depth

Visioli A.
2021-01-01

Abstract

Temperature and irradiance are the two most relevant factors determining the performance of microalgae cultures in open raceway reactors. Moreover, inadequate temperature strongly reduces the biomass productivity in these systems even if enough sunlight is available. Controlling the temperature in large open raceway reactors is considered unaffordable because of the large amount of energy required. This study presents an indirect method for temperature regulation in microalgae raceway reactors by optimizing the culture depth. First, the effect of the culture depth on the raceway temperature is analyzed for different seasons of the year. Afterward, a simulation study is presented where the proposed control approach is compared to the normal operation mode with constant volume in the reactor. This study is also extended to industrial scale. Relevant improvements on the temperature factor and biomass production are presented. The developed knowledge allows the improvement of the performance in open raceway reactors up to 12% without involving additional energy and costs, being a suitable solution for large industrial reactors that until now have no options for controlling the temperature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/537937
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact