This study presents a combined feedback–feedforward adaptive regulator applied to an active vibration control tool holder platform to contain the effect of machining vibrations. The proposed mechatronic solution can be integrated in a milling machine tool as an interface between the beam (Z-axis) and the tool holder. The aim is to counteract vibrations in the broadband frequency range (100 Hz–900 Hz), controlling the tool position in real time. The active vibration control system is based on the harmonic steady-state concept due to the sinusoidal representation of the disturbance signals. The study focuses on the regulator architecture and the main logics applied to satisfy the required performance. A full investigation is executed through simulations and experimental campaigns, proving the disturbance reduction. The active vibration control system is implemented on a 4-axis machine tool and validated using multitonal disturbances. The system is evaluated in compensating a set of undesired effects, such as vibrations generated by unbalanced tools or hard material cutting processes. The obtained results show a maximum reduction of the vibration amplitude by 43.7% at the critical frequency.

Active vibration control development in ultra‐precision machining

Aggogeri F.;Merlo A.;Pellegrini N.
2020-01-01

Abstract

This study presents a combined feedback–feedforward adaptive regulator applied to an active vibration control tool holder platform to contain the effect of machining vibrations. The proposed mechatronic solution can be integrated in a milling machine tool as an interface between the beam (Z-axis) and the tool holder. The aim is to counteract vibrations in the broadband frequency range (100 Hz–900 Hz), controlling the tool position in real time. The active vibration control system is based on the harmonic steady-state concept due to the sinusoidal representation of the disturbance signals. The study focuses on the regulator architecture and the main logics applied to satisfy the required performance. A full investigation is executed through simulations and experimental campaigns, proving the disturbance reduction. The active vibration control system is implemented on a 4-axis machine tool and validated using multitonal disturbances. The system is evaluated in compensating a set of undesired effects, such as vibrations generated by unbalanced tools or hard material cutting processes. The obtained results show a maximum reduction of the vibration amplitude by 43.7% at the critical frequency.
File in questo prodotto:
File Dimensione Formato  
Aggogeri et al - Full Text JVC.pdf

solo utenti autorizzati

Descrizione: Full Text
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/533903
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact