The presented work here is devoted to the definition of innovative methodologies to speed up the programming time of a robotized deburring task. The proposed solutions are defined in a standard cast iron foundry scenario, where the deburring workstations are equipped with flexible but inaccurate fixturing system, the working environment is dirty, and the production is characterized by small batches. The developed system exploits a 3D vision sensor, namely a single-point laser displacement sensor (SP-LS), in combination to a handshaking communication process for the robot-sensor information synchronization. Such approach enables the robot to be used as a measuring instrument allowing a fast reconstruction of 3D images extremely robust in hard working conditions. Adopting a two-stage methodology, the comparison of the reconstructed 3D point cloud with the nominal 3D point cloud allows the automatic adjustment of the robot deburring trajectories. An experimental campaign demonstrates the feasibility and the effectiveness of the proposed solutions.

Flexible robot-based cast iron deburring cell for small batch production using single-point laser sensor

Beschi M.;
2017-01-01

Abstract

The presented work here is devoted to the definition of innovative methodologies to speed up the programming time of a robotized deburring task. The proposed solutions are defined in a standard cast iron foundry scenario, where the deburring workstations are equipped with flexible but inaccurate fixturing system, the working environment is dirty, and the production is characterized by small batches. The developed system exploits a 3D vision sensor, namely a single-point laser displacement sensor (SP-LS), in combination to a handshaking communication process for the robot-sensor information synchronization. Such approach enables the robot to be used as a measuring instrument allowing a fast reconstruction of 3D images extremely robust in hard working conditions. Adopting a two-stage methodology, the comparison of the reconstructed 3D point cloud with the nominal 3D point cloud allows the automatic adjustment of the robot deburring trajectories. An experimental campaign demonstrates the feasibility and the effectiveness of the proposed solutions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528738
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 19
social impact