This paper focuses on the design and implementation of an event-based control architecture to manage a renewable-based microgrid. This microgrid has renewable-energy generation and a hybrid energy storage system that uses electricity and hydrogen. The main load of the microgrid is the energy demand of an office. The primary control objective is to satisfy this load using the available renewable generation and stored energy while reducing the amount of energy purchased from the Utility Power Grid and the degradation of the electromechanical storage devices. To do that, the control architecture defined within an event framework, makes use of a set of state-space model predictive controllers which are selected as a function of a variable sampling period. To evaluate the performance of the proposed architecture, simulation tests for a summer day as well as an analytical study is performed. The obtained results show that the use of the event-based control architecture allows a significant reduction of the number of changes in the control action at the expense of an acceptable deterioration of set-point tracking for a microgrid with several types of electrochemical storage.

Event-based state-space model predictive control of a renewable hydrogen-based microgrid for office power demand profiles

Visioli A.
2020-01-01

Abstract

This paper focuses on the design and implementation of an event-based control architecture to manage a renewable-based microgrid. This microgrid has renewable-energy generation and a hybrid energy storage system that uses electricity and hydrogen. The main load of the microgrid is the energy demand of an office. The primary control objective is to satisfy this load using the available renewable generation and stored energy while reducing the amount of energy purchased from the Utility Power Grid and the degradation of the electromechanical storage devices. To do that, the control architecture defined within an event framework, makes use of a set of state-space model predictive controllers which are selected as a function of a variable sampling period. To evaluate the performance of the proposed architecture, simulation tests for a summer day as well as an analytical study is performed. The obtained results show that the use of the event-based control architecture allows a significant reduction of the number of changes in the control action at the expense of an acceptable deterioration of set-point tracking for a microgrid with several types of electrochemical storage.
File in questo prodotto:
File Dimensione Formato  
CastillaBordonsVisioli.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528521
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact