For any admissible value of the parameters (n) and (k) there exist ([n,k])-Maximum Rank distance ({mathbb F}_q)-linear codes. Indeed, it can be shown that if field extensions large enough are considered, almost all rank distance codes are MRD. On the other hand, very few families up to equivalence of such codes are currently known. In the present paper we study some invariants of MRD codes and evaluate their value for the known families, providing a new characterization of generalized twisted Gabidulin codes.

Identifiers for MRD-codes

Giuzzi, Luca;
2019-01-01

Abstract

For any admissible value of the parameters (n) and (k) there exist ([n,k])-Maximum Rank distance ({mathbb F}_q)-linear codes. Indeed, it can be shown that if field extensions large enough are considered, almost all rank distance codes are MRD. On the other hand, very few families up to equivalence of such codes are currently known. In the present paper we study some invariants of MRD codes and evaluate their value for the known families, providing a new characterization of generalized twisted Gabidulin codes.
File in questo prodotto:
File Dimensione Formato  
CharacterizationMRD-rev.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 297.74 kB
Formato Adobe PDF
297.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/514702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact