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Abstract

For any admissible value of the parameters n and k there exist [n, k]-
Maximum Rank Distance Fq-linear codes. Indeed, it can be shown that if
field extensions large enough are considered, almost all rank metric codes
are MRD. On the other hand, very few families up to equivalence of such
codes are currently known. In the present paper we study some invariants
of MRD codes and evaluate their value for the known families, providing a
new characterization of generalized twisted Gabidulin codes.
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1 Introduction
Delsarte [14] introduced in 1978 rank-distance (RD) codes as q-analogs of the usual
linear error correcting codes over finite fields. In the same paper, he also showed
that the parameters of these codes must obey a Singleton-like bound and that for
any admissible value of the length n and the dimension k this bound is sharp. A
rank metric code attaining this bound is called maximum rank distance (MRD).
In 1985 Gabidulin [16] independently rediscovered Rank-distance codes and also
devised an algebraic decoding algorithm, in close analogy to what happens for
Reed-Solomon codes, for the family of MRD codes described by Delsarte.

∗The research was supported by Ministry for Education, University and Research of Italy
MIUR (Project PRIN 2012 ”Geometrie di Galois e strutture di incidenza”) and by the Italian
National Group for Algebraic and Geometric Structures and their Applications (GNSAGA -
INdAM).
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More recently MRD-codes have been intensively investigated both for their
applications to network coding and for their links with remarkable geometric and
algebraic objects such as linear sets and semifields [1, 5, 6, 8, 10, 11, 12, 13, 23, 25,
33, 35].

It has been shown in [28] (see also [3]) that a generic rank-distance code,
provided that the field involved with the construction is large enough, is MRD.
The authors of [28] make extensive use of algebraic geometry methods and they
are also able to offer an estimate on the probability that a random rank metric
code is MRD as well as to show that the probability of obtaining a Gabidulin code
in this way is negligible.

In [3] Byrne and Ravagnani obtain an approximation of the fraction of RM-
codes of given length and dimension which are MRD using a mostly combinatorial
approach. Their paper show also that some care has to be taken when considering
these density results for codes; indeed, the Fqm–linear MRD codes are dense in the
family of all Fqm–linear rank metric codes C ⊆ Fn

qm of dimension k and length n.
However, this is not the case for Fq–linear MRD-codes in the family of Fq–linear
rank metric codes C ⊆ Fm×n

q with dim C = k; see [3].
In spite of the aforementioned density results, very few families of MRD codes

are currently known up to equivalence; basically, apart from Gabidulin [16] and
twisted Gabidulin [33] codes, the state of the art is given by the codes presented in
Table 1 and their Delsarte duals.

A distinguisher for a family of codes F is a polynomial time algorithm which
can determine if an arbitrary generator matrix G determines a code belonging to F
or not. Existence of distinguishers is interesting not only as a mean to characterize
a code, but also of much importance for applications, since some attacks against
McEliece cryptosystems based on it. The case of (generalized) Gabidulin codes
is investigated in [18], whose result we recall in Theorem 3.1; see also [27], where
such codes are characterized in terms of their generator matrices.

The McEliece cryptosystem is a well known and much studied public key
cryptosystem based on error correcting codes. The basic idea of this encryption
scheme is to start with a t-error correcting code endowed with an efficient algorithm
for decoding and hide its generating matrix G ∈ Fk×n

q by means of a invertible
matrix S and a permutation matrix P , so that Ĝ = SGP . Then the encryption of
a message m ∈ Fk

q is the codeword c = mĜ+ e where e ∈ Fn
q is a noise vector of

weight at most t. In order to discuss the security of this cryptosystem we recall the
model of indistinguishability under chosen plaintext attack (IND-CPA). A system
is secure under this model if an adversary which does not know the key is unable
to distinguish between the encodings c1 and c2 of any two different messages m1

and m2 she has suitably chosen.
Observe that in the case of McEliece cryptosystem, given two distinct messages
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m1,m2 with encodings respectively c1 and c2, the word c1 − c2 has distance at
most 2t from Ĝ(m1 −m2). So, when we consider codes endowed with Hamming
distance and t comparatively “small” it is easy to see that Ĝ(m1 −m2) has almost
everywhere the same components as c1− c2. This makes IND-CPA easier to thwart.
Using the rank metric instead of the Hamming metric can improve the security. So
a potential primary application of MRD codes is for McEliece–like cryptosystems.

Unfortunately, even if “almost all Fqm–linear codes are MRD”, very few of them
are known and even less are amenable to efficient decoding. The possibility of using
Gabidulin codes has been considered in [18]. The authors in [18] however proved
that there is a very efficient distinguisher for them; more in detail, it is possible to
easily recognize a Gabidulin code from a generic MRD code of the same parameters
chosen uniformly at random. As a consequence, the cryptosystems based on them
turn out not to be semantically secure, as it is possible to distinguish a ciphertext
from a random vector; see also [31, 32].

In the present paper we investigate the existence of algebraic distinguishers
(akin to those of [18]) for the currently known families of Fqn-linear MRD codes
and provide some invariants up to equivalence.

Our main results concern the list of dimensions of the intersections of an Fqn-
linear MRD-code with its conjugates and a description of a maximum dimension
Gabidulin codes contained in a fixed MRD-code. We shall see, in particular, that
this can be used as to provide distinguishers for the generalized twisted Gabidulin
codes and how it can also be applied to the other 5 known families (and their duals),
see Tables 1 and 2. We point out that our results answer to the open question [2,
Open Problem II.7.].

1.1 Structure of the paper
In Section 2 we recall the definitions of rank metric (RM) codes and their basic
properties. We also fix our notation and discuss in Section 2.1 the representation
of RM-codes by means of subspaces of linearized polynomials, the representation
which shall be used in most of the paper. Section 2.2 deals with an alternative
convenient representation of RM-codes. In Section 3 we prove one of our main
results, namely the characterization of generalized twisted Gabidulin codes in terms
of the intersection with their conjugates and the Gabidulin subcode they contain;
see Theorem 3.6. This leads to the introduction in Section 4 of two indexes

h(C) := max{dim(C ∩ C [j]) : j = 1, . . . , n− 1; gcd(j, n) = 1}.

and

ind (C) := max{dimG : G ⊆ C is equivalent to a generalized Gabidulin code}
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for MRD-codes. These indexes are then evaluated for the known families of codes.
We conclude the paper with some open problems.

2 Preliminaries
Denote by Fq a finite field and let Vm and Vn be two vector spaces over Fq of dimen-
sion respectively m and n. The vector space Homq(Vn, Vm) of all Fq–linear transfor-
mations Vn → Vm is naturally endowed with a rank distance dR : Homq(Vn, Vm)×
Homq(Vn, Vm) → N where dR(ϕ, ψ) := dim Im(ϕ − ψ). If we fix bases in Vm
and Vn we have that Homq(Vn, Vm) is isometric to the vector space Fm×n

q of all
m× n matrices over Fq endowed with the distance d(A,B) := rk (A− B) for all
A,B ∈ Fm×n

q .
A rank metric code or a (also rank distance code), in brief RM-code, C of

parameters (m,n, q; d) is a subset C of Fm×n
q with minimum rank distance d :=

minA,B∈C, A 6=B{d(A,B)}. A RM-code C is Fq-linear if it is an Fq-vector subspace
of Fm×n

q (or, equivalently, of Homq(Vm, Vn)). When C is an Fq-linear RM-code of
dimension k contained in Fn×n

q , we shall also write, in brief, that C has parameters
[n, k].

As mentioned in Section 1, it has been shown in [14] that an analogue of the
Singleton bound holds for RM-codes; namely, if C is an (m,n, q; d) RM-code, then

|C| ≤ qmax{m,n}(min{m,n}−d+1).

When this bound is achieved, then C is an MRD-code.
The Delsarte dual code of a linear RM-code C ⊆ Fm×n

q is defined as

C⊥ = {M ∈ Fm×n
q : Tr(MN t) = 0 for all N ∈ C}.

Lemma 2.1. [14, 16] Let C ⊆ Fm×n
q be an Fq-linear MRD-code of dimension k

with d > 1. Then the Delsarte dual code C⊥ ⊆ Fm×n
q is an MRD-code of dimension

mn− k.

The weight of a codeword c ∈ C is just the rank of the matrix corresponding to
c. The spectrum of weights of a MRD-code is “complete” in the following sense
(which is a weaker form of [16, Theorem 5]).

Corollary 2.2. [25, Lemma 2.1] Let C be an MRD-code in Fm×n
q with minimum

distance d and suppose m ≤ n. Assume that the null matrix O is in C. Then, for
any 0 ≤ l ≤ m− d, there exists at least one matrix C ∈ C such that rk(C) = d+ l.

Existence of MRD-codes for all possible values (m,n, q; d) of the parameters
has been originally settled in [14] where Singleton systems are constructed and,
independently by Gabidulin in [16]; this has also been generalized in [19].
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More recently Sheekey [33] discovered a new family of linear maximum rank
metric codes for all possible parameters which are inequivalent to those above; see
also [24]. Other examples of MRD-codes can be found in [4, 15, 29, 30, 34, 36].
For some chosen values of parameters there are a few other families of Fqn-linear
MRD-codes of Fn×n

q which are currently known; see [6, 7, 10].
The interpretation of linear RM-codes as homomorphisms of vector spaces

prompts the following definition of equivalence. Two RM-codes C and C ′ of Fm×n
q

are equivalent if and only if they represent the same homomorphism (up to a
change of basis of Vm and Vn) in h ∈ Homq(Vm, Vn)/Gal(Fq). This is the same as
to say that there exist two invertible matrices A ∈ Fm×m

q , B ∈ Fn×n
q and a field

automorphism σ such that {ACσB : C ∈ C} = C ′.
In general, it is difficult to determine whether two RM-codes are equivalent or

not. The notion of idealiser provides an useful criterion.
Let C ⊂ Fm×n

q be an RM-code; its left and right idealisers L(C) and R(C) are
defined as

L(C) = {Y ∈ Fm×m
q : Y C ∈ C for all C ∈ C}

R(C) = {Z ∈ Fn×n
q : CZ ∈ C for all C ∈ C},

see [21, Definition 3.1]. These sets appear also in [25], where they are respectively
called middle nucleus and right nucleus; therein the authors prove the following
result.

Proposition 2.3. [25, Proposition 4.1] If C1 and C2 are equivalent linear RM-codes,
then their left (resp. right) idealisers are also equivalent.

Right idealisers are usually effective as distinguishers for RM-codes, i.e. non-
equivalent RM-codes often have non-isomorphic idealisers. This is in sharp contrast
with the role played by left idealisers which, for the codes we consider in the present
paper, are always isomorphic to Fqn .

2.1 Representation of RM-codes as linearized polynomials
Any RM-code over Fq can be equivalently defined either as a subspace of matrices
in Fm×n

q or as a subspace of Homq(Vn, Vm). In the present section we shall recall a
specialized representation in terms of linearized polynomials which we shall use in
the rest of the paper.

Consider two vector spaces Vn and Vm over Fq. If n ≥ m we can always regard
Vm as a subspace of Vn and identify Homq(Vn, Vm) with the subspace of those
ϕ ∈ Homq(Vn, Vn) such that Im(ϕ) ⊆ Vm. Also, Vn ∼= Fqn , when Fqn is considered
as a Fq-vector space of dimension n. Let now Homq(Fqn) := Homq(Fqn ,Fqn) be
the set of all Fq–linear maps of Fqn in itself. It is well known that each element
of Homq(Fqn) can be represented in a unique way as a linearized polynomial over
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Fqn ; see [20]. In other words, for any ϕ ∈ Homq(Fqn) there is an unique polynomial
f(x) of the form

f(x) :=
n−1∑
i=0

aix
qi =

n−1∑
i=0

aix
[i]

with ai ∈ Fqn and [i] := qi such that

∀x ∈ Fqn : ϕ(x) = f(x).

The set Ln,q of the linearized polynomials over Fqn is a vector space over Fqn with
respect to the usual sum and scalar multiplication of dimension n. When it is
regarded as a vector space over Fq, its dimension is n2 and it is isomorphic to Fn×n

q .
We shall use this point of view in the present paper. Actually, Ln,q endowed with
the product ◦ induced by the functional composition in Homq(Fqn) is an algebra
over Fq. In particular, given any two linearized polynomials f(x) =

∑n−1
i=0 fix

[i]

and g(x) =
∑n−1

j=0 gjx
[j], we can write

(f ◦ g)(x) :=
n−1∑
i=0

n−1∑
j=0

fig
[i]
j x

[(i+j)modn].

Take now ϕ ∈ Homq(Fqn) and let f(x) =
∑n−1

i=0 aix
[i] ∈ Ln,q be the associated

linearized polynomial. The Dickson (circulant) matrix associated to f is

Df :=


a0 a1 . . . an−1

a
[1]
n−1 a

[1]
0 . . . a

[1]
n−2

... ... ... ...
a
[n−1]
1 a

[n−1]
2 . . . a

[n−1]
0

 .

It can be seen that the rank of the matrix Df equals the rank of the Fq-linear map
ϕ, see for example [37].

By the above remarks, it is straightforward to see that any Fq-linear RM-
code might be regarded as a suitable Fq-subspace of Ln,q. This approach shall
be extensively used in the present paper. In order to fix the notation and ease
the reader, we shall reformulate some of the notions recalled before in terms of
linearized polynomials.

A linearized polynomial is called invertible if it admits inverse with respect
to ◦ or, in other words, if its Dickson matrix has non-zero determinant. In the
remainder of this paper we shall always silently identify the elements of Ln,q with
the morphisms of Homq(Fqn) they represent and, as such, speak also of kernel and
rank of a polynomial.
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Also, two RM-codes C and C ′ are equivalent if and only if there exist two
invertible linearized polynomials h and g and a field automorphism σ such that
{h ◦ fσ ◦ g : f ∈ C} = C ′.

The notion of Delsarte dual code can be written in terms of linearized polyno-
mials as follows, see for example [24, Section 2]. Let b : Ln,q × Ln,q → Fq be the
bilinear form given by

b(f, g) = Trqn/q

(
n−1∑
i=0

figi

)

where f(x) =
n−1∑
i=0

fix
[i] and g(x) =

n−1∑
i=0

gix
[i] ∈ Fqn [x] and we denote by Trqn/q the

trace function Fqn → Fq defined as Trqn/q(x) = x+ x[1] + . . .+ x[n−1], for x ∈ Fqn .
The Delsarte dual code C⊥ of a set of linearized polynomials C is

C⊥ = {f ∈ Ln,q : b(f, g) = 0, ∀g ∈ C}.
Furthermore, the left and right idealisers of a code C ⊆ Ln,q can be written as

L(C) = {ϕ(x) ∈ Ln,q : ϕ ◦ f ∈ C for all f ∈ C};
R(C) = {ϕ(x) ∈ Ln,q : f ◦ ϕ ∈ C for all f ∈ C}.

Definition 1. Suppose gcd(n, s) = 1 and let Gk,s := 〈x[0], x[s], . . . , x[s(k−1)]〉 ≤ Ln,k.
Any code equivalent to Gk,s is called a generalized Gabidulin code. Any code
equivalent to Gk := Gk,1 is called a Gabidulin code.
Proposition 2.4. [33, Theorem 5] Suppose gcd(s, n) = 1 and let Hk,s(η) :=
〈x + ηx[sk], x[s], . . . , x[s(k−1)]〉. If N(η) = Nqn/q(η) :=

∏n−1
i=0 η

[i] 6= (−1)nk, then
Hk,s(η) is a MRD-code with the same parameters as Gk,s.
Definition 2. Any code equivalent to Hk,s(η) with N(η) 6= (−1)nk and η 6= 0 is
called a (generalized) twisted Gabidulin code.
Remark 2.5. Clearly, if 1 < k < n− 1

Hk,s(η) ∩Hk,s(η)
[s] = 〈x[2s], . . . , x[s(k−1)]〉

and so dim(Hk,s(η) ∩Hk,s(η)
[s]) = k − 2 if η 6= 0. Indeed, a0(x+ ηx[sk]) + a1x

[s] +
. . .+ ak−1x

[s(k−1)] ∈ 〈x[s] + η[s]x[s(k+1)], x[2s], . . . , x[sk]〉 if and only if a0 = a1 = 0.
The two families of codes seen above are closed under the Delsarte duality.

Lemma 2.6. [16, 19, 24, 33] The Delsarte dual C⊥ of an Fqn-linear MRD-code
C of dimension k is an Fqn-linear MRD-code of dimension n − k. Also, G⊥

k,s is
equivalent to Gn−k,s and Hk,s(η)

⊥ is equivalent to Hn−k,s(−η[n−ks]).
Apart from the two infinite families of Fqn-linear MRD-codes Gk,s and Hk,s(η),

there are a few other examples known for n ∈ {6, 7, 8}. Such examples are listed in
Table 1 and their Delsarte duals in Table 2.
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C parameters conditions reference

C1 = 〈x, δx[1] + x[4]〉Fq6
(6, 6, q; 5)

q > 4
certain choices of δ [6, Theorem 7.1]

C2 = 〈x, x[1] + x[3] + δx[5]〉Fq6
(6, 6, q; 5)

q odd
q ≡ 0,±1 (mod 5)

δ2 + δ = 1
(δ ∈ Fq)

[8, Theorem 5.1]

C3 = 〈x, x[s], x[3s]〉Fq7
(7, 7, q; 5)

q odd
gcd(s, 7) = 1

[7, Theorem 3.3]

C4 = 〈x, δx[1] + x[5]〉Fq8
(8, 8, q; 7)

q odd
δ2 = −1

[6, Theorem 7.2]

C5 = 〈x, x[s], x[3s]〉Fq8
(8, 8, q; 6)

q ≡ 1 (mod 3)
gcd(s, 8) = 1

[7, Theorem 3.5]

Table 1: Linear MRD-codes in low dimension

Di = C⊥
i parameters conditions

D1 = 〈x[1], x[2], x[4], x− δ[5]x[3]〉Fq6
(6, 6, q; 3)

q > 4
certain choices of δ

D2 = 〈x[1], x[3], x− x[2], x[4] − δx〉Fq6
(6, 6, q; 3)

q odd
q ≡ 0,±1 (mod 5)

δ2 + δ = 1
(δ ∈ Fq)

D3 = 〈x, x[2s], x[3s], x[4s]〉Fq7
(7, 7, q; 4)

q odd
gcd(s, 7) = 1

D4 = 〈x[1], x[2], x[3], x[5], x[6], x− δx[4]〉Fq8
(8, 8, q; 3)

q odd
δ2 = −1

D5 = 〈x, x[2s], x[3s], x[4s], x[5s]〉Fq8
(8, 8, q; 4)

q ≡ 1 (mod 3)
gcd(s, 8) = 1

Table 2: Delsarte duals of the codes Ci for i = 1, . . . , 5
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2.2 Linear RM-codes as subspaces of Fn
qn

In [16], Gabidulin studied RM-codes as subsets of Fn
qn . This view is still used in

[3, 18, 28, 27]. As noted before, Ln,q equipped with the classical sum and the scalar
multiplication by elements in Fqn is an Fqn-vector space. Let B = (g1, . . . , gn) an
ordered Fq-basis of Fqn . The evaluation mapping

ΦB : f(x) ∈ Ln,q 7→ (f(g1), . . . , f(gn)) ∈ Fn
qn

is an isomorphism between the Fqn-vector spaces Ln,q and Fn
qn . Therefore, if W is

an Fqn-subspace of Ln,q, a generator matrix G of ΦB(W ) can be constructed using
the images of a basis of W under the action of ΦB. Also, if G is a generator matrix
of ΦB(W ) of maximum rank, then an Fqn-basis for W can be defined by using the
application Φ−1

B on the rows of G.

3 Characterization of generalized twisted Gabidulin
codes

A. Horlemann-Trautmann et al. in [18] proved the following characterization of
generalized Gabidulin codes.

Theorem 3.1 ([18]). A MRD-code C over Fq of length n and dimension k is
equivalent to a generalized Gabidulin code Gk,s if and only if there is an integer
s < n with gcd(s, n) = 1 and dim(C∩C [s]) = k−1, where C[s] = {f(x)[s] : f(x) ∈ C}.

If C is equivalent to a generalized twisted Gabidulin code Hk,s(η), then dim(C ∩
C[s]) = k − 2. This condition, in general, is not enough to characterize MRD-codes
equivalent to Hk,s(η). The present section is devoted to determine what further
conditions are necessary for a characterization.

Denote by τα the linear application defined by τα(x) = αx and denote by
U1 = {Tr ◦ τα : α ∈ Fqn} = {αx+α[1]x[1] + · · ·+α[n−1]x[n−1] : α ∈ Fqn}. The set U1

is an Fq-subspace of Ln,q of dimension n whose elements have rank at most one. It
can be proven that the set U1 of all linearized polynomials with rank at most one is

U1 =
⋃

β∈F∗
qn

τβ ◦ U1 = {τβ ◦ Tr ◦ τα : α, β ∈ Fqn}.

Lemma 3.2. The space Lq,n admits a basis of elements contained in U1.

Proof. Let (α1, α2, · · · , αn) be a basis of Fqn over Fq. Define αi := Tr ◦ ταi
for i =

1, . . . , n and B := {αi : i = 1, . . . , n}. Consider the basis B0 = (x, x[1], . . . , x[n−1])
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of Lq,n; the components of the vectors of B with respect to this basis are the

M :=


α1 α

[1]
1 . . . α

[n−1]
1

α2 α
[1]
2 . . . α

[n−1]
2

... ...
αn α

[1]
n . . . α

[n−1]
n


By [20, Corollary 2.38], det(M) 6= 0; in particular the vectors of B are linearly
independent in Lq,n and so B is a basis for Lq,n.
Lemma 3.3. Let n and s be two integers such that gcd(s, n) = 1, if p(x) ∈ Ln,q

and p(x) = λp(x)[s] for some λ ∈ F∗
qn, then p(x) is in U1.

Proof. Under the assumptions, the map x→ x[s] is a generator of the Galois group
of Fqn : Fq. In particular, for all 0 ≤ i ≤ n−1 there are λi such that p(x) = λip(x)

[i].
It follows that the Dickson matrix of p(x) has rank at most 1 and this proves the
thesis.

For the sake of completeness we prove the following lemma; see also [22, Lemma
3]
Lemma 3.4. Let n and s be two integers such that gcd(s, n) = 1, if W 6= {0} is
an Fqn-subspace of Ln,q such that W = W [s], then W admits a basis of vectors in
U1.
Proof. By Lemma 3.2, there exists a basis B of Ln,q consisting of vectors of U1. In
particular, for any b ∈ B and i = 0, . . . , n− 1 we have b[i] = b. There is a unique
matrix G in row reduced echelon form whose rows contain the components of a
basis of W with respect to the basis B. Since W = W [s] and B[s] = B we have
that the rows of G[s] contain the components of a basis of W [s] with respect to B;
however G[s] represents also the vectors of a basis of W and it is in row reduced
echelon form; so G[s] = G. Since gcd(s, n) = 1 this yields that all entries of G[s]

are defined over Fq. In particular, each vector of this basis of G is in the vector
space U1 over Fq, that is it has rank 1.

The following Lemma rephrases the requirements of Theorem 3.1 in a more
suitable way for the arguments to follow.
Lemma 3.5. Let n and s be two integers such that gcd(s, n) = 1 and let C be an
Fqn-subspace of dimension k > 1 of Ln,q. If dim(C ∩C [s]) = k− 1 and C ∩U1 = {0},
then there exists p(x) such that

C = 〈p(x), p(x)[s], . . . , p(x)[s(k−1)]〉Fqn
.

If C contains at least one invertible linearized polynomial, then p(x) is invertible
and C ∼= Gk,s.
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Proof. Note that, since C is an Fqn-subspace and C ∩ U1 = {0}, then C ∩ U1 = {0}.
We argue by induction. We first prove the case k = 2. By hypothesis, C ∩ C[s] =
〈h(x)〉 and so h(x)[s] ∈ C[s]. Since C ∩ U1 = {0}, by Lemma 3.3 the polynomials
h(x) and h(x)[s] are linearly independent over Fqn and C = 〈h(x)[s(n−1)], h(x)〉Fqn

=

〈p(x), p(x)[s]〉Fqn
, with p(x) = h(x)[s(n−1)].

Suppose now that the assert holds true for k−1 and take k > 2. Let V := C∩C [s],
V is an Fqn-subspace of C of dimension k − 1 such that V ∩ U1 = {0}, hence by
Lemma 3.4 V 6= V [s]. Then, since V and V [s] are both contained in C[s], by
Grassmann’s formula

dim(V ∩ V [s]) = k − 2.

So, dimV = k − 1, V ∩ U1 = {0} and dim(V ∩ V [s]) = k − 2. By induction, there
is h(x) ∈ V such that

V = 〈h(x), h(x)[s], . . . , h(x)[s(k−2)]〉Fqn
.

Also,
h(x)[s(n−1)] ∈ V [s(n−1)] = C[s(n−1)] ∩ C ⊂ C.

If it were h(x)[s(n−1)] ∈ V , then V = V [s], which has already been excluded. So,

C = 〈p(x), p(x)[s], . . . , p(x)[s(k−1)]〉Fqn
,

where p(x) = h(x)[s(n−1)].
Suppose now there is x0 ∈ F∗

qn such that p(x0) = 0. Then, α1p(x0) + · · · +
αkp(x0)

[s(k−1)] = 0 for any choice of αi ∈ Fqn , i = 1, . . . , k. In particular, if C
contains at least one invertible linearized polynomial, then p(x) must also be
invertible. In such a case

C ◦ p−1(x) = 〈x, x[s], . . . , x[s(k−1)]〉Fqn
;

so C is equivalent to Gk,s.

We now focus on the case dim(C ∩ C [s]) = k − 2.
• If dim C = 2 we just have C = 〈p(x), q(x)〉Fqn

with q(x) /∈ 〈p(x)[s]〉Fqn
and

p(x) /∈ 〈q(x)[s]〉Fqn
.

• Suppose dim C = 3, dim(C ∩ C [s]) = 1 and C ∩ U1 = {0}. As before, write
V := C ∩C [s]. Since V and V [s] are contained in C[s], by Grassmann’s formula,

0 ≤ dim(V ∩ V [s]) ≤ 1.

So, either V = V [s] or dim(V ∩ V [s]) = 0. The former case is ruled out by
Lemma 3.4. So dim(V ∩ V [s]) = 0 and V = 〈h(x)〉Fqn

. It follows that

C = 〈p(x), p(x)[s]〉Fqn
⊕ 〈q(x)〉Fqn

,

with p(x) = h(x)[s(n−1)].
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• Suppose that dim C = 4, dim(C ∩ C[s]) = 2 and C ∩ U1 = {0}. Write
V := C ∩ C [s]. Clearly, since V 6= V [s],

0 ≤ dim(V ∩ V [s]) ≤ 1.

Suppose dim(V ∩V [s]) = 1. Then, the subspace V fulfills all of the assumptions
of Lemma 3.5, so there is h(x) ∈ V such that

V = 〈h(x), h(x)[s]〉Fqn

and h(x)[s(n−1)] ∈ C \ V , since, otherwise, V = V [s]. So,

C = 〈p(x), p(x)[s], p(x)[2s]〉Fqn
⊕ 〈q(x)〉Fqn

,

with p(x) = h(x)[s(n−1)].
Suppose now that dim(V ∩ V [s]) = 0; then C = V ⊕ V [s(n−1)]. If V =
〈h(x), g(x)〉Fqn

then V [s(n−1)] = 〈h(x)[s(n−1)], g(x)[s(n−1)]〉Fqn
, and so

C = 〈p(x), p(x)[s]〉Fqn
⊕ 〈q(x), q(x)[s]〉Fqn

,

with p(x) = h(x)[s(n−1)] and q(x) = g(x)[s(n−1)].

More generally, we can prove the following result.

Theorem 3.6. Let n and s be two integers such that gcd(s, n) = 1 and let C be an
Fqn-subspace of dimension k > 2 of Ln,q. Let V := C ∩ C[s]. Suppose dimV = k− 2
and C ∩ U1 = {0}, then C has one of the following forms

1. if dim(V ∩ V [s]) = k − 3, then there exist p(x) and q(x) in C such that

C = 〈p(x), p(x)[s], . . . , p(x)[s(k−2)]〉Fqn
⊕ 〈q(x)〉Fqn

;

2. if dim(V ∩ V [s]) = k − 4, then there exist p(x) and q(x) in C such that

C = 〈p(x), p(x)[s], . . . , p(x)[s(i−1)]〉Fqn
⊕ 〈q(x), q(x)[s], . . . , q(x)[s(j−1)]〉Fqn

,

where
(i, j) =

{
(k
2
, k
2
) if k is even

(k−1
2
, k+1

2
) if k is odd.

Proof. We have already proved the assert for k ≤ 4. Assume by induction that the
assert holds for each t < k with k ≥ 4. Since V and V [s] are contained in C[s], it
follows that

dim(V ∩ V [s]) ≥ k − 4,
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that is dim(V ∩ V [s]) ∈ {k − 4, k − 3}, since V 6= V [s]. If dim(V ∩ V [s]) = k − 3,
then, by Lemma 3.5, there exists h(x) ∈ V such that

V = 〈h(x), h(x)[s], . . . , h(x)[s(k−3)]〉Fqn
.

Since h(x)[s(n−1)] ∈ C \ V (otherwise V = V [s]), we get

C = 〈p(x), p(x)[s], . . . , p(x)[s(k−2)]〉Fqn
⊕ 〈q(x)〉Fqn

,

where p(x) = h(x)[s(n−1)]. If dim(V ∩ V [s]) = k − 4, since V has dimension k − 2
and V ∩ U1 = {0}, by induction there exist h(x) and g(x) such that

V = 〈h(x), . . . , h(x)[s(l−1)]〉Fqn
⊕ 〈g(x), . . . , g(x)[s(m−1)]〉Fqn

,

with
(l,m) =

{
(k−2

2
, k−2

2
) if k is even

(k−3
2
, k−1

2
) if k is odd.

Since V, V [s(n−1)] ⊂ C and dimV ∩ V [s] = k − 4 we get C = V + V [s(n−1)]. So,

C = 〈h(x)[s(n−1)], h(x), . . . , h(x)[s(l−1)]〉Fqn
⊕ 〈g(x)[s(n−1)], g(x), . . . , g(x)[s(m−1)]〉Fqn

.

If we now put p(x) = h(x)[s(n−1)] and q(x) = g(x)[s(n−1)], then we get the assert.

Examples of k-dimensional MRD-codes C with dim(C ∩ C [s]) = k − 2 and
dim(V ∩ V [s]) = k − 3, where V = C ∩ C [s], are the generalized twisted Gabidulin
codes; see Remark 2.5. An example where dimV ∩ V [s] = k − 4 is given by the
code D2 (see Table 2), which can be written as

D2 = 〈−x+ x[2],−x[1] + x[3]〉Fq6
⊕ 〈−δx[1] + x[3],−δx[2] + x[4]〉Fq6

.

Lemma 3.7. Let C ⊆ Ln,q be an Fqn-linear RM-code with dimension k containing
a MRD-code G equivalent to a generalized Gabidulin code Gl,s of dimension l ≤ k,
then there exists a permutation linearized polynomial p(x) and (k − l) linearized
polynomials q1(x), . . . , qk−l(x) such that

C = 〈q1(x), . . . , qk−l(x), p(x), p(x)
[s], . . . p(x)[s(l−1)]〉. (1)

We call the polynomials qi(x) of Lemma 3.7 polynomials of extra type.

Proof. By Lemma 3.5, there exists a permutation linearized polynomial p(x) such
that

G = 〈p(x), p(x)[s], . . . , p(x)[s(l−1)]〉Fqn

and p(x),…,p(x)[s(l−1)] are linearly independent. Now, we can extend the list of
polynomials {p(x), p(x)[s], . . . , p(x)[s(l−1)]} to a basis of C with suitable polynomials
qi as to get the form (1).
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Lemma 3.8. If C ⊆ Ln,q is an Fqn-linear MRD-code of dimension k containing
a code G equivalent to Gk−1,s, i.e. G = 〈p(x), p(x)[s], . . . , p(x)[s(k−2)]〉Fqn

with p(x)
an invertible linearized polynomial, and for which there exists an extra polynomial
g(x) in 〈p(x)[−s], p(x)[s(k−1)]〉Fqn

with g(x) = p(x)[−s] + ηp(x)[s(k−1)] and Nqn/q(η) 6=
(−1)kn, then C is equivalent to Hk,s(η

[s]).

Proof. By the previous lemma and by hypothesis,

C = 〈g(x), p(x), p(x)[s], . . . , p(x)[s(k−2)]〉Fqn
,

with p(x) permutation linearized polynomial and g(x) = p(x)[−s] + ηp(x)[s(k−1)].
Since C and C[s] are equivalent, we can suppose that

C = 〈q(x), p(x)[s], . . . , p(x)[s(k−1)]〉Fqn
,

with q(x) = p(x) + η[s]p(x)[sk]. So,

C = 〈x[s], . . . , x[s(k−1)], x+ η[s]x[sk]〉Fqn
◦ p(x).

Since C is a MRD-code, then C ◦ p−1(x) = 〈x[s], . . . , x[s(k−1)], x+ η[s]x[sk]〉Fqn
is also

a MRD-code equivalent to Hk,s(η
[s]).

Theorem 3.6 prompts the following characterization of generalized twisted
Gabidulin codes.

Theorem 3.9. Let C be an Fqn-linear MRD-code of dimension k > 2 contained
in Ln,q. Then, the code C is equivalent to a generalized twisted Gabidulin code if
and only if there exists an integer s such that gcd(s, n) = 1 and the following two
conditions hold

1. dim(C ∩ C [s]) = k − 2 and dim(C ∩ C [s] ∩ C[2s]) = k − 3, i.e. there exist
p(x), q(x) ∈ C such that

C = 〈p(x)[s], p(x)[2s], . . . , p(x)[s(k−1)]〉Fqn
⊕ 〈q(x)〉Fqn

;

2. p(x) is invertible and there exists η ∈ F∗
qn with N qn/q(η) 6= (−1)kn such that

p(x) + ηp(x)[sk] ∈ C.

Proof. The proof follows directly from Theorem 3.6 and Lemma 3.8.

As a consequence we get the following.

Theorem 3.10. Let C be an Fqn-linear RM-code of dimension k > 2 of Ln,q, with
C ∩ U1 = {0}. If there exists an integer s such that gcd(s, n) = 1 and
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1. dim(C ∩ C [s]) = k − 2 and dim(C ∩ C [s] ∩ C[2s]) = k − 3, i.e. there exist
p(x), q(x) ∈ C such that

C = 〈p(x)[s], p(x)[2s], . . . , p(x)[s(k−1)]〉Fqn
⊕ 〈q(x)〉Fqn

;

2. p(x) is invertible and there exists η ∈ F∗
qn such that p(x) + ηp(x)[sk] ∈ C and

N qn/q(η) 6= (−1)kn,

then C is a MRD-code equivalent to Hk,s(η).

Note that if such invertible linearized polynomial p(x) exists, then C ∩ C[s] ∩
· · · ∩ C [s(k−2)] = 〈p(x)[s(k−2)]〉Fqn

.

4 Distinguishers for RM-codes
A distinguisher is an easy to compute function which allows to identify an object
in a family of (apparently) similar ones. Existence of distinguishers is of particular
interest for cryptographic applications, as it makes possible to identify a candidate
encryption from a random text.

As seen in the previous section, it has been shown in [18] that an MRD-code C
of parameters [n, k] is equivalent to a generalized Gabidulin code if, and only if,
there exists a positive integer s such that gcd(s, n) = 1 and dim(C ∩ C[s]) = k − 1.
Following the approach of [18], we define for any RM-code C the number

h(C) := max{dim(C ∩ C [j]) : j = 1, . . . , n− 1; gcd(j, n) = 1}.

Theorem 3.1 states that an MRD-code C is equivalent to a generalized Gabidulin
code if and only if h(C) = k − 1.

Also, for any given Fqn-linear code C, the following proposition is immediate.

Proposition 4.1. For any k-dimensional Fqn-linear code C,

C[i]⊥ = C⊥[i],

for each i ∈ {0, . . . , n− 1}. So, we have

h(C⊥) = n− 2k + h(C).

We now define also the Gabidulin index, ind (C) of a [n, k] RM-code as the
maximum dimension of a subcode G ≤ C contained in C with G equivalent to a
generalized Gabidulin code.

Clearly, 1 ≤ ind (C) ≤ k and ind (C) = k if and only if C is a Gabidulin code.
It can be readily seen that if C and C ′ are two equivalent codes, then they have
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the same indexes ind (C) = ind (C ′) and h(C) = h(C ′). Also, h(C) ≥ ind (C)− 1 for
RM-codes.

We shall now prove that for the known codes the Gabidulin index can be
effectively computed. More in detail, in the next theorem we determine these
indexes for each known Fqn-linear MRD-code. Our result is contained in Table 3.
Also in the table we recall the right idealisers (up to equivalence) for these codes
(see also [38]).

Theorem 4.2. The Gabidulin indexes ind (C) and the values of h(C) for the known
MRD-codes C of parameters [n, k] are as given in Table 3.

Code ind h R [n, k]
Gk,s k k − 1 Fqn [n, k]

Hk,s(η) k − 1 k − 2 Fgcd(n,k)
q [n, k]

C1 1 0 Fq3 [6, 2]
C2 1 0 Fq2 [6, 2]
C3 2 1 Fqn [7, 3]
C4 1 0 Fq4 [8, 2]
C5 2 1 Fqn [8, 3]

Code ind h R [n, k]

D1 2 2 Fq3 [6, 4]
D2 2 2 Fq2 [6, 4]
D3 3 2 Fqn [7, 4]
D4 3 4 Fq4 [8, 6]
D5 4 3 Fqn [8, 5]

Table 3: Known linear MRD-codes and their Gabidulin index

Proof. Clearly, the Gabidulin index of a generalized Gabidulin code is k; any
twisted generalized Gabidulin code of dimension k contains a generalized Gabidulin
code of dimension k − 1; so, its index is k − 1.

We now consider the case of the codes C1, C2, C3, C4, C5,D3 and D5. By construc-
tion, it is immediate to see that they all contain a generalized Gabidulin code of
codimension 1; so, they also have Gabidulin index k − 1, where k is the dimension
of the code. Also for all of them k − 2 ≤ h(C) < k − 1, so h(C) = k − 2.

The cases of the dual codes Di with i = 1, 2, 4 must be studied in more detail.
First we prove that the codes D1,D2 and D4 do not contain any code equivalent
to Gk−1,s, for any s, i.e. that their Gabidulin index is less than k − 1 and then
determine the exact value.

The code D1

By Table 2, we have that

D1 = 〈x[1], x[2], x[4], x− δ[5]x[3]〉Fq6
.
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Suppose that there is a code D contained in D1 equivalent to a generalized Gabidulin
code of dimension 3, i.e. either D ' G3,1 or D ' G3,5. Since G3,1 and G3,5 are
equivalent, then D is equivalent to G3,1. By Theorem 3.1, h(D) = 2; on the other
hand, since D1 is not equivalent to a Gabidulin code it must be h(D) < 3. So,
D1 ∩ D[1]

1 = D ∩D[1] and hence D1 ∩ D[5]
1 = D ∩D[5]. From these equalities we get

D ∩D[1]
= 〈x[2], x[1] − δx[4]〉Fq6

and
D[5] ∩ D = 〈x[1], x− δ[5]x[3]〉Fq6

.

Since dimD = 3 we obtain

D = 〈x[1], x[2], x[1] − δx[4]〉Fq6
= 〈x[1], x[2], x[4]〉Fq6

.

The code D is not MRD, since it contains the polynomial x[1] − x[4] which has
kernel of dimension 3, in particular it cannot be equivalent to G3,1. It follows that
ind (D1) = 2 since 〈x[1], x[2]〉Fq6

' G2,1.

The code D2

By Table 2 the code D2 is

D2 = 〈x[1], x[3], x− x[2], x[4] − δx〉Fq6
,

with q odd, δ2+ δ = 1 and q ≡ 0,±1 (mod 5), hence δ ∈ Fq. Suppose ind (D2) = 3,
as before D2 contains a code D equivalent to G3,1. Arguing as the previous case,
we get

D = 〈−x+ x[2], x[3] − δx[1],−x[1] + x[3]〉Fq6
= 〈x[1], x[3],−x+ x[2]〉Fq6

.

To show that D is not equivalent to any G3,s we compute its right idealiser R(D).

Write ϕ(x) =
5∑

i=0

aix
[i] ∈ R(D); then x[1] ◦ ϕ(x), x[3] ◦ ϕ(x) ∈ D, so ϕ(x) = ηx, for

some η ∈ Fq6 . Furthermore, (x − x[2]) ◦ ϕ(x) ∈ D; so η = η[2] and η ∈ Fq2 . So,
we get R(D) ' Fq2 . If D were to be equivalent to G3,1, by Proposition 2.3 and
by [25, Corollary 5.2], it would follow that R(D) is equivalent to R(G3,1) ' Fq6 ,
which is not possible. Suppose now D2 to contain a code D equivalent to G2,1.
Then by Theorem 3.1 and by Lemma 3.5 we easily get D = 〈f(x), f(x)[1]〉Fq6

with f(x) an invertible linearized polynomial. Also, D ∩ D[1]
= 〈f(x)[1]〉 ⊂ D2 ∩

D[1]
2 = 〈−x[1] + x[3], x[4] − δx[2]〉Fq6

, so f(x)[1] = a(−x[1] + x[3]) + b(x[4] − δx[2]),
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since f(x) is invertible we may assume b = 1. In particular, D2 contains a code
equivalent to G2,1 if and only if there exists a ∈ Fq6 such that f(x)[1] is invertible.
Let Df [1] be the Dickson matrix associated to the polynomial f(x)[1] considered
above. Then, for a = 1 we have detDf [1] = 16(2 − 3δ) 6= 0. So, D2 contains
〈−x − δx[1] + x[2] + x[3],−x[1] + x[3] + x[4] − δx[2]〉Fq6

' G2,1 and, consequently,
ind (D2) = 2.

The code D4

The code D4 is

D4 = 〈x[1], x[2], x[3], x[5], x[6], x− δx[4]〉Fq8
,

with q odd and δ2 = −1. Suppose that D4 contains a code D equivalent to a
generalized Gabidulin code of dimension 5. Since G5,1 ' G5,7 and G5,3 ' G5,5, we
get that either D ' G5,1 or D ' G5,3. By Lemma 3.5, dim(D ∩ D[s]

) = 4, with
either s = 1 or s = 3, and, since D4 is not equivalent to any generalized Gabidulin
code, dim(D4 ∩ D[s]

4 ) < 5, so D4 ∩ D[s]
4 = D ∩D[s]. First assume that D ' G5,1. It

is easy to see that

D ∩D[1]
= 〈x[2], x[3], x[6], x[1] − δ[1]x[5]〉Fq8

.

Since the dimension of D is 5 and x[1] ∈ D \ (D ∩D[1]
), it follows that

D = 〈x[1], x[2], x[3], x[6], x[1] − δ[1]x[5]〉Fq8
= 〈x[1], x[2], x[3], x[5], x[6]〉Fq8

.

The Delsarte dual of D is
D⊥

= 〈x, x[4], x[7]〉Fq8
,

which is not MRD, since of x − x[4] has kernel of dimension 4. By Lemma 2.1,
neither D is an MRD-code, a contradiction. Now, assume D ' G5,3. As before,

D ∩D[3]
= 〈x[1], x[5], x[6], x− δx[4]〉Fq8

and
D[5] ∩ D = 〈x[6], x[2], x[3], x[5] − δ[5]x[1]〉Fq8

.

So,

D = 〈x[1], x[6], x[2], x[3], x[5] − δ[5]x[1]〉Fq8
= 〈x[1], x[2], x[3], x[5], x[6]〉Fq8

.

Again we get a contradiction since D is not an MRD-code.
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Suppose now that D4 contains a code D equivalent to G4,1. By Theorem 3.1 and
by Lemma 3.5, D = 〈p(x), p(x)[1], p(x)[2], p(x)[3]〉Fq8

for some invertible linearized
polynomial p(x) ∈ D4. Clearly, 〈p(x)[1], p(x)[2], p(x)[3]〉Fq8

⊂ 〈x[2], x[3], x[6], x[1] −
δ[1]x[5]〉Fq8

= D4 ∩ D[1]
4 and so there exist a, b, c, d ∈ Fq8 such that

p(x)[1] = ax[2] + bx[3] + cx[6] + d(x[1] − δ[1]x[5]),

p(x)[2] = a[1]x[3] + b[1]x[4] + c[1]x[7] + d[1](x[2] − δ[2]x[6]),

p(x)[3] = a[2]x[4] + b[2]x[5] + c[2]x+ d[2](x[3] − δ[3]x[7]).

Since these are all elements of D4, we get a = b = c = d = 0, i.e. D4

cannot contain a code equivalent to G4,1. Finally, suppose that D is equivalent
to G4,3. By Theorem 3.1 and by Lemma 3.5, D = 〈p(x), p(x)[3], p(x)[6], p(x)[1]〉Fq8

for some invertible linearized polynomial p(x) ∈ D4 and arguing as before we get
a contradiction, i.e. D4 cannot contain a code equivalent to G4,3. So, D4 cannot
contain a code equivalent to a generalized Gabidulin code of dimension 4 and so
ind (D4) < 4. Since 〈x[1], x[2], x[3]〉Fq8

' G3,1, it follows ind (D4) = 3.

Thus Theorem 3.6 provides the following structure result on k-dimensional
Fqn-linear RM-codes with h(C) = k − 2.

Theorem 4.3. Let C be a k-dimensional Fqn-linear RM-code of Ln,q having h(C) =
k−2, with k > 2. Denote by s an integer such that gcd(s, n) = 1 and dim(C∩C[s]) =
k − 2. Let V := C ∩ C[s] and suppose that C ∩ U1 = {0}, then C has one of the
following forms

1. if dim(V ∩ V [s]) = k − 3, then there exist p(x) and q(x) in C such that

C = 〈p(x), p(x)[s], . . . , p(x)[s(k−2)]〉Fqn
⊕ 〈q(x)〉Fqn

;

2. if dim(V ∩ V [s]) = k − 4, then there exist p(x) and q(x) in C such that

C = 〈p(x), p(x)[s], . . . , p(x)[s(i−1)]〉Fqn
⊕ 〈q(x), q(x)[s], . . . , q(x)[s(j−1)]〉Fqn

,

where
(i, j) =

{
(k
2
, k
2
) if k is even

(k−1
2
, k+1

2
) if k is odd.

In particular, C is equivalent to Hk,s(η), for some η ∈ Fqn, if and only if dim(V ∩
V [s]) = k−3, p(x) is invertible and there exists η ∈ F∗

qn such that p(x)+ηp(x)[sk] ∈ C
and N qn/q(η) 6= (−1)kn.
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Remark 4.4. Note that, in the hypothesis of Theorem 4.3, if one of the polynomials
p(x) or q(x) is invertible, then either ind (C) = dim C − 1 or ind (C) ≥ dim C

2
. This

holds for the known MRD-codes listed in the Tables 1 and 2; it is currently an
open question whether an Fqn-linear MRD-code C having h(C) = dim C − 2 and
ind (C) < dim C

2
might exist or not. We also remark that the known MRD-codes

presented in the Tables 1 and 2 which are not equivalent to a generalized Gabidulin
code, have h(C) = dim C − 2.

Suppose a code C has generator matrix in standard form [Ik|X]. Using the
arguments of [28, Lemma 19] it can be seen that dim(C∩C [s]) ≥ dim C−i with i > 0
if and only if rk(X −X [s]) ≤ i, and this condition can be expressed by imposing
that all minors of X −X [s] of rank j > i have determinant 0. In particular, the set
of all codes with h(C) ≥ dim(C)− i is contained in the union of a finite number of
closed Zariski sets. So, for a generic MRD-code we have h(C) ∈ max{0, 2k − n}.
We leave as an open problem to determine some families of MRD-codes with
h(C) < dim(C)− 2 and, more in detail, to determine the possible spectrum of the
values of h(C) might attain as C varies among all MRD-codes over a given field.
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