We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008). The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash–Moser iteration scheme.
Two-dimensional vortex sheets for the nonisentropic Euler equations: Nonlinear stability
Morando, Alessandro;Trebeschi, Paola;WANG, Tao
2019-01-01
Abstract
We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008). The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash–Moser iteration scheme.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.