We discuss a novel approach to the mathematical analysis of equations with memory, based on the notion of a {\it state}. This is the initial configuration of the system at time $t=0$ which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function $G:\R^+\to\R^+$ such that $$G(0)=\lim_{s\to 0}G(s)>\lim_{s\to\infty}G(s)>0$$ we consider an abstract version of the evolution equation $$\partial_{tt} {\bm u}({\bm x},t)-\Delta\Big[G(0) {\bm u}({\bm x},t) +\int_0^\infty G'(s) {\bm u}({\bm x},t-s) {\rm d} s\Big]=0$$ arising from linear viscoelasticity.
A new approach to equations with memory
GIORGI, Claudio;PATA, Vittorino
2010-01-01
Abstract
We discuss a novel approach to the mathematical analysis of equations with memory, based on the notion of a {\it state}. This is the initial configuration of the system at time $t=0$ which can be unambiguously determined by the knowledge of the dynamics for positive times. As a model, for a nonincreasing convex function $G:\R^+\to\R^+$ such that $$G(0)=\lim_{s\to 0}G(s)>\lim_{s\to\infty}G(s)>0$$ we consider an abstract version of the evolution equation $$\partial_{tt} {\bm u}({\bm x},t)-\Delta\Big[G(0) {\bm u}({\bm x},t) +\int_0^\infty G'(s) {\bm u}({\bm x},t-s) {\rm d} s\Big]=0$$ arising from linear viscoelasticity.File | Dimensione | Formato | |
---|---|---|---|
ARMA_2010_FGP_Add_Info.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
32.01 kB
Formato
Adobe PDF
|
32.01 kB | Adobe PDF | Visualizza/Apri |
FGP ARMA.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
437.06 kB
Formato
Adobe PDF
|
437.06 kB | Adobe PDF | Visualizza/Apri |
Abstract_FGP.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
DRM non definito
Dimensione
41.03 kB
Formato
Adobe PDF
|
41.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.