A general statistical model for ordinal or rating data, which includes some existing approaches as special cases, is proposed. The focus is on the CUB models and a new class of models, called Nonlinear CUB, which generalize CUB. In the framework of the Nonlinear CUB models, it is possible to express a transition probability, i.e. the probability of increasing one rating point at a given step of the decision process. Transition probabilities and the related transition plots are able to describe the state of mind of the respondents about the response scale used to express judgments. Unlike classical CUB, the Nonlinear CUB models are able to model decision processes with non-constant transition probabilities.
Modeling rating data with Nonlinear CUB models
MANISERA, Marica;ZUCCOLOTTO, Paola
2014-01-01
Abstract
A general statistical model for ordinal or rating data, which includes some existing approaches as special cases, is proposed. The focus is on the CUB models and a new class of models, called Nonlinear CUB, which generalize CUB. In the framework of the Nonlinear CUB models, it is possible to express a transition probability, i.e. the probability of increasing one rating point at a given step of the decision process. Transition probabilities and the related transition plots are able to describe the state of mind of the respondents about the response scale used to express judgments. Unlike classical CUB, the Nonlinear CUB models are able to model decision processes with non-constant transition probabilities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.