The reconstruction error due to quantization of wavelet subbands can be modeled as a cyclostationary process because of the linear periodically shift variant property of the inverse wavelet transform. For N-dimensional data, N-dimensional reconstruction error power cyclostationary patterns replicate on the data sample lattice. For audio and image coding applications this fact is of little practical interest since the decoded data is perceived in its wholeness, the error power oscillations on single data elements cannot be seen or heard and a global PSNR error measure is often used to represent the reconstruction quality. A different situation is the one of 3D data (static volumes or video sequences) coding, where decoded data are usually visualized by plane sections and the reconstruction error power is commonly measured by a PSNR[n] sequence, with n representing either a spatial slicing plane (for volumetric data) or the temporal reference frame (for video). In this case, the cyclostationary oscillations on single data elements lead to a global PSNR[n] oscillation and this effect may become a relevant concern. In this paper we study and describe the above phenomena and evaluate their relevance in concrete coding applications. Our analysis is entirely carried out in the original signal domain and can easily be extended to more than three dimensions. We associate the oscillation pattern with the wavelet filter properties in a polyphase framework and we show that a substantial reduction of the oscillation amplitudes can be achieved under a proper selection of the basis functions. Our quantitative model is initially made under high-resolution conditions and then qualitatively extended to all coding rates for the wide family of bit-plane quantization-based coding techniques. Finally, we experimentally validate the proposed models and we perform a subjective evaluation of the visual relevance of the PSNR[n] fluctuations in the cases of medical volumes and video coding.
Cyclostationary error analysis and filter properties in a 3D wavelet coding framework
LEONARDI, Riccardo;SIGNORONI, Alberto
2006-01-01
Abstract
The reconstruction error due to quantization of wavelet subbands can be modeled as a cyclostationary process because of the linear periodically shift variant property of the inverse wavelet transform. For N-dimensional data, N-dimensional reconstruction error power cyclostationary patterns replicate on the data sample lattice. For audio and image coding applications this fact is of little practical interest since the decoded data is perceived in its wholeness, the error power oscillations on single data elements cannot be seen or heard and a global PSNR error measure is often used to represent the reconstruction quality. A different situation is the one of 3D data (static volumes or video sequences) coding, where decoded data are usually visualized by plane sections and the reconstruction error power is commonly measured by a PSNR[n] sequence, with n representing either a spatial slicing plane (for volumetric data) or the temporal reference frame (for video). In this case, the cyclostationary oscillations on single data elements lead to a global PSNR[n] oscillation and this effect may become a relevant concern. In this paper we study and describe the above phenomena and evaluate their relevance in concrete coding applications. Our analysis is entirely carried out in the original signal domain and can easily be extended to more than three dimensions. We associate the oscillation pattern with the wavelet filter properties in a polyphase framework and we show that a substantial reduction of the oscillation amplitudes can be achieved under a proper selection of the basis functions. Our quantitative model is initially made under high-resolution conditions and then qualitatively extended to all coding rates for the wide family of bit-plane quantization-based coding techniques. Finally, we experimentally validate the proposed models and we perform a subjective evaluation of the visual relevance of the PSNR[n] fluctuations in the cases of medical volumes and video coding.File | Dimensione | Formato | |
---|---|---|---|
SPIC_2006-1.pdf
solo utenti autorizzati
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
LS_SPIC-2006_pre-print.pdf
accesso aperto
Descrizione: LS_SPIC-2006_pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
623.52 kB
Formato
Adobe PDF
|
623.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.