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Abstract

The reconstruction error due to quantization of wavelet subbands can be modelled
as a cyclostationary process because of the linear periodically shift variant property
of the inverse wavelet transform. For audio and image coding applications this fact
is of little practical interest, both from quantitative and perceptual points of view.
Differently, when coding is applied to volumetric data (such as MR scans) or se-
quences of images (such as video) the non stationary nature of the reconstruction
error becomes an objectionable concern. Indeed as 3D data are usually displayed
as series of images, the reconstruction error is typically measured by the PSNR[n]
sequence, where n represents either a spatial slicing plane (3D data) or the temporal
reference plane (video). What can be observed is an oscillation of PSNR[n] typically
of the order of 1dB. This work aims at founding an explanation to this phenomenon.
The analysis is entirely carried out in the original signal domain and can easily be
extended to more than 3 dimensions. In the case of biorthogonal wavelet basis it
is shown that a substantial reduction of the oscillation amplitude can be achieved
under a proper selection of the basis functions. Different coding rates have been
considered from high resolution conditions to low bit-rate coding. An experimen-
tal validation of the proposed model has been performed in the case of a bit-plane
coding approach.
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1 Introduction

1.1 Overview and objectives

The quantization error introduced in the wavelet domain is often simply con-
sidered to be equivalent to a quantization performed in the signal domain due
to the (near-) orthogonal behavior of the discrete wavelet transform (DWT).
While this is reasonably true with respect to the error variance, high order de-
pendencies of the quantization error in the signal domain may lead to adverse
effects for certain types of signals. The linear and periodically time-variant
(LPTV) nature of the inverse DWT modifies the statistical properties of the
quantization error process introduced in the transformed domain. In terms
of stationarity the error becomes cyclostationary (CS) [1]. In this work, the
effects of quantization error non linear dependencies are considered for the
case of multidimensional data coding. The CS statistical behavior will be as-
sociated to the data sampling grid and characterized by a hypercubic periodic
pattern characterized by the time-varying periodicity along each data dimen-
sion. Statistical behavior will be measured on hyperplanes intersecting the
data, e.g. the PSNR measured on the rows of an image or on the slices of
a volume. In these cases, our interest is focusing on how and to what extent
the CS property generates oscillatory phenomena of the PSNR by moving
the hyperplane along the remaining orthogonal directions. This point is not
commonly considered in image coding: no particular attention is dedicated to
fluctuations of the PSNR between consecutive rows, as the perception of the
coded information remains 2-dimensional. In the case of the slices of a volume
instead, measuring the PSNR[n] on each slice n orthogonally to the slicing
plane is a common procedure. Indeed in this case only minimal fluctuations
can be tolerated in particular in the case of medical data-sets. As the slicing
can take place in any particular direction, the oscillatory behavior should be
monitored along all such directions. Objective quality fluctuations are usually
tolerated in the case of (2D+t) video compression (where they are typically
generated by hybrid schemes) because of the band-pass temporal response of
the human visual system. On the contrary, when considering static 3D data
(e.g. computed tomography CT or magnetic resonance MR data-sets) adja-
cent slices are commonly seen side by side or within a movie loop, with low or
hand-driven frame-rate. In this case limiting PSNR oscillation is important to
ensure good reliability with respect to the original material. This is especially
true in the field of diagnostic imaging, where 3D images are in widespread
use and compression is a relevant concern. This paper proposes a quantitative
analysis and a multidimensional model in order to describe the reconstruction
error oscillation due to wavelet based compression and how to ease its reduc-
tion. In fact a particular property of some linear phase biorthogonal filters
will emerge which causes a great reduction of the oscillation. A time domain
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formulation of the problem is proposed here so as to describe the pattern of
oscillation. Section 2 addresses the problem from one to L wavelet decom-
position levels in 1D. Section 3 extends the 1D case to the multidimensional
one (especially 3D). The presentation is then adapted to handle the charac-
teristics of real codecs working at various bit-rates (section 4). Experimental
simulation are described finally in section 5.

1.2 Relations to other works

The periodically time variant property of the wavelet transform is well known
[1]. The analysis of the effects of this property in terms of propagation of
the subband quantization error on the reconstructed data has been made by
Uzun and Haddad in [2] as an extension of the work of Westerink et al. [3]. The
main objective of this work was to model and find wavelet filter banks which
minimize the reconstruction error in an MSE sense. Those approaches, and
in general other works on subband coding systems which incorporates quan-
tization models (e.g. [4–7]), highlight expected values of the spectral density
functions and perform their analysis mainly in the z-transformed domain. In a
similar framework, Reichel et al. [8] compare the subband quantization effects
for real and integer wavelet transforms. In this work, a different perspective has
been adopted: we are interested in modelling not the expected value but the
non stationary properties of the reconstruction error in the data-domain. As a
consequence a data-domain analysis – which allows to assess the relationship
between local statistical behavior and filter-bank properties – is suggested.

As far as the coding schemes are concerned, a certain number of papers de-
scribe effective wavelet compression scheme for 3D data [9–14], while a stan-
dardization activity is currently being finalized by the ISO/JPEG community
[15]. In the validation phase of this work we do not consider a specific coding
scheme. This is due to the fact that for most existing coders similar bit-plane
quantization strategies are adopted.

2 Reconstruction error properties

In this section we shortly review some well known fundamentals of multirate
filter banks and we start to use a one-dimensional framework to formulate a
data domain statistical analysis of the reconstruction error. We consider first
a single stage 2-channel decomposition, then extend to the case of a multilevel
DWT. Finally, the focus is shifted to the case of linear phase biorthogonal
wavelet basis. In order to easily characterize the error terms, the polyphase
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Fig. 1. (a) 2-channel subband decomposition and quantization error addition; (b)
Synthesis of the reconstruction error and its equivalent polyphase representation (c).

multirate filter bank representation (see e.g. [1]) is a more effective represen-
tation, with respect to the octave-band tree structure.

2.1 Reconstruction error in a single synthesis stage

The additive quantization error, introduced with respect to the i-th subband
as denoted by the signals qi[k]. At the output of the inverse discrete wavelet
transform (IDWT), the reconstruction error r[n] adds up to the perfect re-
constructed signal. Each subband error qi[k] contribution to r[n] is denoted by
ri[n]. The statistical properties of qi[k] and the linear periodically time variant
(LPTV) nature of each channel of the synthesis filter bank determine a CS
behavior of each ri[n], thus of the whole r[n]. Fig.1(a) shows the well known
2-channel decomposition with the associated two sources of quantization noise
in the subband domain. Without such noise components qi[n], the overall sys-
tem acts as a pure delay b with gain a. The quantization error contribution
shown in Fig.1(b) creates a LPTV 1 behavior, with period 2, due to the pres-
ence of the dyadic up-samplers. The polyphase representation of the synthesis
bank is shown in Fig.1(c), where

1 From now on we prefer to use the term “shift-variance” instead of “time-variance”
because of the nature of the data that will be considered. For the sake of clarity the
acronym LPTV will be preserved.

4



gi[n] = (2 ↑) (e0
i ) [n] + (2 ↑) (e1

i ) [n − 1] ,

Gi(z) = E0
i (z

2) + z−1E1
i (z

2) .
(1)

Here various error components 2 can be considered for their contribution to
the reconstruction error r[n], namely r = r0 + r1 = r0

0 + r1
0 + r0

1 + r1
1 =

(r0
0 + r0

1) + (r1
0 + r1

1) = r0 + r1, where r0 � r0
0 + r0

1 and r1 � r1
0 + r1

1 represent
the overall contribution of the polyphase components at even and odd samples
respectively, that is r0[n] = 0 for (nmod2) = 1 and r1[n] = 0 for (nmod2) = 0.

To better understand the synthesis filter bank effect on the quantization error
we start from a high resolution analysis: for each channel i, qi[n] can be con-
sidered the realization of a uniformly distributed ergodic white noise qi[n]. In
addition, ∀i, n̄ let us assume that the random variables qi[n̄] are i.i.d., with
fqi

(α) = 1
∆

rect( α
∆

). Hence they have the same expected value and variance
ηq = E {qi[n]} = 0 and σ2

q = E {q2
i [n]} = ∆2

12
.

In the simple case of Fig.1(c) it’s easy to verify that the 2-dimensional ergodic
input processes lead, thanks to the LPTV property, to a one-dimensional cyclo-
stationary output process, with period 2, having the following characteristics:
by linearity, ηr = 0 ; by the LPTV properties,

σ2
r [n] =

⎧⎪⎨
⎪⎩

σ2
r0 for (n mod 2) = 0 ,

σ2
r1 for (n mod 2) = 1 .

Now, always by linearity, the reconstruction error can be decomposed as fol-
lows:

σ2
r0 = σ2

r0
0
+ σ2

r0
1
= σ2

q0
G2

(
e0
0[n]

)
+ σ2

q1
G2

(
e0
1[n]

)
(2)

σ2
r1 = σ2

r1
0
+ σ2

r1
1
= σ2

q0
G2

(
e1
0[n]

)
+ σ2

q1
G2

(
e1
1[n]

)
, (3)

where G2(·) is the energy operator and ei
j[n] represents each filter polyphase

component.

2 We adopt a notation in which the superscripts correspond to the reference in-
stants in the period of time variance (or the reference number of the polyphase
components), while subscripts are used to identify each subband channel. Moreover,
we indicate as (2 ↑) (·) the upsampling operator on its argument.
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Fig. 2. Polyphase components of a linear phase FIR filter in the case of (a) even
length, (b) odd length.

2.2 Reduction of the variance oscillation

The absolute difference |σ2
r0 − σ2

r1 | is a first indicator of the entity of the
cyclostationary implications on the reconstruction error. As it can be intuitive
it is desirable to make this difference small. Considering (2) and (3), and
supposing that σ2

q0
= σ2

q1
, for the above difference to be equal to zero it is

sufficient that the sum of the energies of the low and high pass corresponding
(same phase) polyphase components give the same value. Minimization of
the |σ2

r0 − σ2
r1 | could be conversely achieved by proper design of the filter

bank. As it will be shown, a very simple solution can be found thanks to
the properties of linear phase biorthogonal filters. These filters are commonly
used for visual data compression. They have either odd (e.g. the popular 9/7
filters [16]) and even lengths (e.g. the 10/18 filers introduced in [17] and the
more recent 22/14 ones [18]). It is well known that linear phase filters exhibit
symmetric or antisymmetric impulse response. Let us now understand how
this property is conveyed to the polyphase representation of a linear phase
filter bank. Odd length symmetric filters (Type I and III linear-phase FIR)
have sample centered symmetry axes, while even length ones (Type II and IV)
have bin centered symmetry axes. Thus it is easy to notice (see Fig.2) that
in the odd length case the polyphase splitting generates two symmetric filters
(an odd length and an even length one), while for even length filters two non-
symmetric filters are generated, one being the mirror image of the other (with
respect to the original center of symmetry). At this point, we observe that
for even length filters the cyclostationary behavior of the output noise r[n]
for a 2-channel filter bank, is structurally eliminated because σ2

r0 = σ2
r1 and

fr0(α) = fr1(α), whereas this does not hold for the odd length filter case. Even
though this clear-cut distinction is only valid on a 1-D wavelet decomposition
case, it appears instructive for other filterbank configurations.
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multirate filter bank, (c) polyphase representation of (b).

2.3 Reconstruction error in a L-levels IDWT

The analysis of the output noise characteristics is now considered for a com-
plete octave band wavelet decomposition. In Fig.3a a dyadic L-level IDWT is
shown (with L = 3). For the purpose of establishing the statistical behavior of
the output noise component, it is convenient to use the equivalent single-adder
(L+1)-channel multirate scheme (Fig.3b), where F0(z) = G0(z

4)G0(z
2)G0(z),

F1(z) = G1(z
4)G0(z

2)G0(z), F2(z) = G1(z
2)G0(z) and F3(z) = G1(z). The

polyphase representation (Fig.3c) allows for an immediate interpretation of
the reconstruction error components.

The value of σ2
r at the position n can be obtained by a generalization of (2) and

(3) which considers a higher number of subband channels with the appropriate
number of polyphase components:

σ2
r [n] =

L∑
l=0

σ2
rl
[n] =

L∑
l=0

σ2

r
n mod λ(l)
l

, λ(l) = 2L+1−(l+δ[l]) (4)

being σ2
rj
l

= σ2
ql
· G2

(
ej

l [m]
)
, with l = 0, . . . , L and j = 0, . . . , λ(l) − 1, the

j-th polyphase component of σ2
rl
[n]. In (4) we see that at each position n the

right polyphase component j = nmodλ(l) is selected for each subband channel
l. The usage of δ(l) allows to handle any low pass channel 0 with the same
resolution level of the high pass channel 1.

The random process r[n] which represents the reconstruction error is cyclosta-
tionary with period 2L, in fact r[n] represents a sum of CS random processes
rl[n] with periodicity 2l. We show in Fig.4 the sequence of σ2

rl
[n] values for a

16 sample signal, with L set to 3 and with a common value for each subband
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error variance σ2
q = ∆2/12 with ∆ = 8. During the analysis stage the lower

resolution subbands exhibit a larger gain with respect to the high resolution
ones. This gain is compensated during the synthesis stage so that the wavelet
domain quantization error is subject to a de-emphasis which becomes more
substantial as the resolution level decreases. This can be seen from Fig.4 where
the average error contribution decreases towards low resolution subbands and
so does its oscillation amplitude. Therefore the first decomposition level er-
ror contribution will be dominant in terms of defining the oscillation trend of
the CS behavior. For identical biorthogonal wavelet filters, we plot in Fig.5
MSE[n] = σ2

r [n] and the corresponding PSNR[n] for each position n in the
original signal domain. The CS oscillation pattern exhibits as expected a 2L

(L = 3) periodicity. The PSNR difference between the j-th and the (j + 1)-th
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position for a L-level IDWT can be written as

∆PSNR[j] = 10 log
2552

σ2
rj

− 10 log
2552

σ2
rj+1

= 10 log
σ2

rj+1

σ2
rj

(5)

where the j-th MSE value can be expressed as σ2
rj =

∑L
l=0 σ2

rj
l

, with l =

0, . . . , L, σ2
rj
l

being the contribution of the l-th subband.

We can also note that for a reference quantization noise σ2
q which remains the

same in each subband, there is no dependency of the PSNR fluctuation with
respect to it. ∆PSNR[j] is only a function of the polyphase filter coefficients;
e.g. for a 1-level IDWT case (see (2),(3)):

|∆PSNR[j]|= 10 log
[
G2

(
e1
0[n]

)
+ G2

(
e1
1[n]

)]

− 10 log
[
G2

(
e0
0[n]

)
+ G2

(
e0
1[n]

)]
∀j.

As expected the oscillation amplitude is smaller in the case of even length
filters.

3 Three dimensional extension of the model

The above formulation provides the mean to model the reconstruction error
in the context of N -dimensional data coding. In this section we concentrate
on a set of structural properties of r[n] in a 2D or 3D framework. We make
the assumption of dealing with separable wavelet transforms. This is common
to almost all coding applications. Moreover, in order to avoid burdening the
notation, we will consider only the case of same basis filters used for all spatial
directions.

3.1 2D and 3D cyclostationarity patterns

For N-dimensional data, periodic behavior of the reconstruction error statistics
can be observed on the signal cartesian reference system. In particular the CS
periodicities produce some elementary patterns (e.g. tiles or brick) which in
turns partition the whole data space. Our first objective is to model what
happens when increasing the problem dimension. Let us deal first with the
2D case. To calculate the error reconstruction variance at each pixel position
the separable 2D IDWT dyadic tree is implemented using a separable single-
adder representation. Dyadic and single-adder schemes are depicted in Fig.6
considering a 3 level decomposition. For each subband channel in Fig.6(b)
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Fig. 6. Dyadic (a) and single-adder (b) representation of a 3 level 2D-IDWT.

two one-dimensional filters are operating in cascade along the vertical and
horizontal dimensions respectively. A general expression of such filters, for
l = 1 . . . L, is given by

Fl,a(z) =
L∏

i=l

Ga·δ[i−l](z
γ(i)) (6)

with a ∈ B = {0, 1}, γ(i) = 2L−i . For l = 0, F0,0(z) = F1,0(z) (because the
c0 and d1 coefficients belong to the same scale). The filters involved in the
horizontal and vertical directions are assumed to be the same (then, in (6), we
don’t use direction related subscript for the z variable). In the first synthesis
stage of Fig.6(b), the vertical filtering introduces on each subband column
the CS behavior described by the (2), (3). It can be easily observed that, at
the input of the horizontal stage (before the upsamplers), i.i.d. hypotheses on
the error still hold along the row direction, but with alternating non-uniform
pdf’s on each row due to the previous column filtering. The horizontal stage
introduces a CS behavior on each row, which combined to that introduced on
the column, results in a square tiled bidimensional CS pattern. This simple
mechanism is shown in Fig.7 in the case of 1-level IDWT (which determines
a 2 × 2 cyclostationary pattern). By analogy to the 1D case, increasing the
IDWT number of levels to L, the CS pattern becomes a 2L × 2L matrix which
constitutes the basic tile of the 2D cyclostationarity. In other terms, consid-
ering the reconstruction error variance, we have σ2

r [n0, n1] = σ2
r [n̄0, n̄1] where

n̄0 = n0 mod 2L, n̄1 = n1 mod 2L.

The reconstruction error variance values for each spatial (tile) position can be
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Fig. 7. 2D ciclostationary pattern generation for a 1-level IDWT.

calculated by the following extension of (4):

σ2
r [n0, n1] = σ2

r
n̄0,n̄1
0,(0,0)

+
L∑

l=1

∑
s∈B2+

σ2
r

n̄0,n̄1
l,s

(7)

where n̄0 = n0 mod λ(l), n̄1 = n1 mod λ(l), λ(l) = 2L+1−(l+δ[l]) and, given
a, b ∈ B = {0, 1},

B
2+ = {(a, b)} \ {(0, 0)} .

In (7) the first term refers to the lowest resolution (l = 0) low-pass subband
coefficients (s = (0, 0)), while the second term represents the contribution of
the 3 detail subbands s at each resolution level l ∈ (1, L). For each CS tile
position, every subband contribution σ2

r
n̄0,n̄1
l,s

to the total reconstruction error
variance is given by

σ2
r

n̄0,n̄1
l,s

= σ2
ql,s

P n̄0
l,a P n̄1

l,b (8)

where P n̄
l,a = G2

(
en̄

l,a[n]
)

and En̄
l,a(z) the n̄−th polyphase component of Fl,a(z)

defined in (6). In (8) we considered the general case of a different quantization
error variance σ2

ql,s
associated to each subband.

A symmetry property can be demonstrated for the σ2
r [n̄0, n̄1] CS tile pattern

which is relevant for our analysis:

Proposition 1 Given ¯̄σ2
r a 2L × 2L matrix (CS tile) with elements σ2

r [n̄0, n̄1]

derived from (7), then ¯̄σ2
r is symmetric, i.e. ¯̄σ2

r = (¯̄σ2
r )

T .

Proof : We easily observe that, thanks to the separability in (8), and to the
complementarity of the elements of B

2+, we have a symmetric condition al-
ready at each IDWT decomposition level, namely σ2

r
n̄0,n̄1
0,(0,0)

= σ2
r

n̄1,n̄0
0,(0,0)

and σ2
r

n̄0,n̄1
l

=

σ2
r

n̄1,n̄0
l

, since

σ2
r

n̄0,n̄1
l

=
∑

s∈B2+

σ2
r

n̄0,n̄1
l,s

= σ2
ql,s

(
P n̄0

l,0 P n̄1
l,1 + P n̄0

l,1 P n̄1
l,0 + P n̄0

l,1 P n̄1
l,1

)
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even if, in general, the single subband component of the reconstruction error
variance is not symmetric: σ2

r
n̄0,n̄1
l,s

�= σ2
r

n̄1,n̄0
l,s

. Then, by denoting a fundamental

CS component with the use of 2l+δ[l] × 2l+δ[l] dimensional matrices ¯̄σ2
rl

with
elements σ2

r
n0,n1
l

, such matrices are symmetric by construction. Now (7) can

be written in a matrix form: ¯̄σ2
r = ¯̄OL ⊗ ¯̄σ2

r0,(0,0)
+

∑L
l=1

¯̄Ol ⊗ ¯̄σ2
rl
, where ⊗ is the

Kronecker product, while ¯̄Ol is a
(
2(l+δ[l])−1 × 2(l+δ[l])−1

)
matrix containing all

ones.
As the operator ⊗ preserves the symmetry and both ¯̄σ2

r0,(0,0)
and ¯̄σ2

rl
are sym-

metric, ¯̄σ2
r is symmetric being a sum of symmetric matrices. �

The 3D extension follows easily. Using the same notation we have:

σ2
r [n0, n1, n2] = σ2

r [n̄0, n̄1, n̄2] = σ2
r

n̄0,n̄1,n̄2
0,(0,0,0)

+
L∑

l=1

∑
s∈B3+

σ2
r

n̄0,n̄1,n̄2
l,s

, (9)

with
σ2

r
n̄0,n̄1,n̄2
l,s

= σ2
ql,s

P n̄0
l,a P n̄1

l,b P n̄2
l,c , s = (a, b, c) ∈ B

3+ ; (10)

and the following proposition holds:

Proposition 2 Given ¯̄̄σ2
r , a 2L×2L×2L three-dimensional array (CS brick),

with elements σ2
r [n̄0, n̄1, n̄2] derived from (9), then ¯̄̄σ2

r is symmetric, i.e. ¯̄̄σ2
r =(

¯̄̄σ2
r

)T1

=
(
¯̄̄σ2

r

)T2

, where (·)T1 and (·)T2 are the two possible transposition oper-

ators with respect to the main diagonals of the tensor; i.e. ¯̄̄
A = (((

¯̄̄
A)T1)T1)T1 =

(((
¯̄̄
A)T2)T2)T2 and ¯̄̄

A = ((
¯̄̄
A)T1)T2 = ((

¯̄̄
A)T2)T1. �

The proof of the this proposition can be derived in analog fashion to the proof
used for Proposition 1. The analysis can easily be extended in a similar way
to higher dimension problems.

Propositions 1 and 2 virtually allow to establish the spatial orientation in-
variance of the CS patterns which in turns determines, in the 3D case, the
independence of the PSNR oscillation from the slicing direction, as we will see
in the next section.

3.2 PSNR oscillation along various volume slicing directions

The description of the 3D cyclostationarity on a symmetric cubic pattern
allows us to quantify the fluctuations of the PSNR evaluated on the images
obtained by slicing a volume (or 3D data-set) along one of its perpendicular
axes. In fact, we can estimate the expected MSE values along a certain slicing
direction by averaging the punctual (voxel related) MSE estimates of the
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Fig. 8. Quantification of the sPSNR[n] on adjacent cutting planes using expression
(13). The direction n represents any of the 3 orthogonal directions of the volumetric
data set. Six biorthogonal filters are compared, for a 3 level wavelet reconstruction.

various CS brick slices. We call this measure "slice-based" MSE (sMSE).
For example, by slicing along the n0 direction, we obtain the 2L periodical
sequence:

sMSE0
r [n] =

1

22L

2L−1∑
n1=0

2L−1∑
n2=0

σ2
r [n, n1, n2] (11)

Thanks to the Proposition 2, we can easily observe that

sMSE0
r [n] = sMSE1

r [n] = sMSE2
r [n] ∀ n , (12)

where sMSE1
r [n] = 1

22L

∑2L−1
n0=0

∑2L−1
n2=0 σ2

r [n0, n, n2],
and sMSE2

r [n] = 1
22L

∑2L−1
n0=0

∑2L−1
n1=0 σ2

r [n0, n1, n].
Similarly we define a "slice-based" Peak Signal to Noise Ratio (sPSNR) as

sPSNR[n] = 10 log
2552

sMSEr[n]
. (13)

In Fig.8 we show the estimated sPSNR[n] values using (13) for 6 different
biorthogonal filters, where we assumed to have the same quantization error
σ2

ql,s
= σ2 on each subband. The set of biorthogonal filters is representative

of the most relevant wavelet kernels used in coding applications. It contains
three odd length and three even length filter pairs. We included
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• the best known B-spline 9/7 filter bank [16,19] and, from the same family,
the 9/3 filters [19, pag. 277]

• two longer even length kernels, the 10/18 of [17] and the 22/14 [18]; both
have demonstrated, also in our experience [12,20], competitive performance,
despite their length, when used for coding 2D images and 3D medical data

• two well known short filters: the Haar and the 5/3 B-spline kernels [19, pag.
277], because of their role in the current research on wavelet video coding.
In fact short filters are useful for an effective Motion Compensated Tempo-
ral Filtering (MCTF), which must be used instead of the rectilinear third
dimension filtering, for high performance scalable video coding applications
[21, Ch. 13].

Fig.8 suggests us to make the following considerations:

• As expected, odd length filters produce a substantially higher sPSNR[n]
fluctuation with respect to the even length ones.

• The odd length filters 5/3 and 9/3, with their short (3 tap) low-pass syn-
thesis stage, are particularly critical; they present a sPSNR[n] oscillation of
about 2.8dB and 1.8dB respectively.

• Comparing the most popular filters for still image coding, the maximum
sPSNR[n] oscillation for the 9/7 filters is about 0.95dB versus a 0.07dB of
the 10/18 and 22/14 ones. In terms of reconstruction error power this means
that we have a relative peak to peak sMSE[n] oscillation (with respect to
the mean value) of about 25% for 9/7 filters while it is only of the order of
1,5% for the 10/18 and 22/14 configurations.

• Filters do not only differs in terms of sPSNR[n] oscillation amplitude but
also in terms of average sPSNR[n] value, and this fact can find a broader
confirmation for N-dimensional signals. In other words we observe a filter
ranking in terms of averaged quantization-reconstruction error power trans-
fer. This could be seen as a contributing factor to the multivariate problem
of determining the goodness of a wavelet basis for coding purposes. Usually
the coding performance of wavelet filters are complex to quantify on real
data and justifications are usually made in terms of approximation power
or energy compaction attributes. Data centered criterions could be used in
combination to quantization error centered ones (as the above ranking) in
order to better understand the filter peculiarities for visual data coding. For
example the Haar basis shows the lowest error power transfer, but it has
poor approximation capabilities. On the other hand it is interesting to see
that even if 22/14 and 10/18 visual performance should be hard to compare
there clearly is an error power transfer disparity in favor of the 22/14 filter
pair. Other considerations about the apparent better average behavior of
the 9/7 filters will be made in the experimental section 5.

• Compared to the 1D case, there is an increased predominance of the finest
detail subband on the overall oscillation trend (see Fig.4). This is due to the
normalization (de-emphasis) factors applied to the lower detail subbands.

14



This originates from an augmented error de-emphasis (due to subband en-
ergy normalization) effect, which grows in power with the dimensionality of
the problem.

• The plane based measure of sPSNR[n] actually averages the local expected
PSNR[n0, n1, n2] value on each voxel (or frame pixel). Thus the sPSNR oscil-
lation between adjacent planes is less than the local PSNR pattern variations
in the vicinity of a voxel. This observation further suggests to use even length
linear phase filters also to keep a greater PSNR or MSE homogeneity in a
spatial neighborhood.

The above considerations will be further argued in Sec.5 by comparing the
estimates deriving from (11) and shown in Fig.8 with respect to simulations
on real data for a suitable rate-distortion range. Before to do this we want to
describe what happens when, due to higher compression ratio, the oscillation
model based on high resolution hypothesis, degrades.

4 3D embedded wavelet coding and bit-plane quantization

Until now we have made some simplifying hypothesis on σ2
ql,s

, where s ∈ B
t,

t ∈ {1, 2, 3}. Our prediction of a CS fluctuation of the reconstruction error has
to be reconsidered in a real context of interest. As it will be clear, the i.i.d.
hypothesis has to be verified and discussed for various bit-rates from an intra-
and inter-subband point of view. The properties of the quantization error
are determined by the coding technique at various bit-rates and by the data
to be coded which consequently affect the statistics of the wavelet subbands.
Quantization optimality is well known for gaussian sources and high-resolution
conditions [22–24]. At the same time, real data statistics and coding rate of
interest are often far from such ideal conditions, and the associated behavior is
no longer valid. In this section we present a degradation model which is able
to describe what happens to the CS reconstruction error when diminishing
the coding rate from high resolution to low bit-rate conditions. Due to the
variability of the image statistics this will be a qualitative model that can be
applied to a wide class of bit-plane based wavelet coders. Our specific interest
consists in modelling the quantization error pdf when the bit-rate diminishes
in order to infer on the value of σ2

ql,s
. This in turns influences the σ2

r [n] and
sPSNR[n] fluctuations. To do this we briefly recall some essential prerequisites
and assumptions before discussing the degradation model which will be verified
in the experimental section.
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4.1 Preliminary considerations on σ2
ql,s

State of the art wavelet coders (based on zerotree [25,26], zeroblocks [27],
significant-clusters [28,12] or independent blocks [29]), all make use of a pro-
gressive bit-plane quantization (BPQ) strategy. The wavelet structure and
the high-order statistical dependency among the coefficients intra- or inter-
subband are exploited by the significance map description and/or by the
arithmetic coding to obtain a progressive or scalable coded bit-stream. The
bit-plane quantizer is an almost uniform quantizer with the only exception of
a double sized zero centered "dead zone". The corresponding quantization law
can be expressed as:

Q(x, ∆) =

⎧⎪⎨
⎪⎩

0 if |x| < ∆ ,

sgn(x) (�x/∆� + 1/2)∆ if |x| � ∆ ;
(14)

where, for the b-th bit-plane, ∆ = 2b. When applied to the whole subband
structure the progressive BPQ starts from the level ∆ = 2B, with

B =
⌊
max
n,l,s

{log2 c0[n], log2 dl,s[n]}
⌋

(15)

and refines the wavelet coefficients representation by halving the value of ∆ for
each added bit-plane. Mallat [30] verified that at low bit-rates and for natural
images the BPQ improves the R-D performance compared to the uniform
one. Because of the zero concentrated wavelet coefficients pdf shape, a 2∆
step size around the zero value considerably reduces the number of significant
coefficients and consequently the associated bit-rate. The expected distortion
is smaller than the one obtained by uniform ∆ quantization with the same
bit-rate reduction.

When departing from high resolution conditions the quantization error will
become dependent of the data pdf. Pdf’s of subband coefficients obtained from
natural images have been observed to follow, with a good approximation, a
generalized Gaussian distribution [16]:

G(x) = a exp {− |bx|γ} (16)

with

a =
bγ

2Γ
(

1
γ

) and b =
1

σx

√√√√√Γ
(

3
γ

)

Γ
(

1
γ

) (17)

where Γ(·) is the “Gamma function”[31]. Given the source pdf (16) and the
quantization law, it is well known how to precisely determine the quantization
error pdf. Let fX(x) be the pdf of a subband source, and {Ik, k ∈ 1 . . .K} the
set of events of the type Ik : X ∈ (xk−1, xk] with probability Pk = Prob{Ik},
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Fig. 9. Assessment of the bit-plane quantization error pdf, starting from the origi-
nal wavelet coefficient pdf. (a), (b) and (c) represents three different situation with
increasing quantization resolution vs pdf coefficient variance ratio.

then the quantization error pdf expression is given by (total probability the-
orem):

fq(q) =
K∑

k=1

Pkfq(q|Ik) (18)

where the fq(q|Ik) is the zero-centered version of fX(x|Ik) with respect to the
Ik center value xk,

fq(q|Ik) = fX(q + xk|Ik) (19)

with

fX(x|Ik) =

⎧⎪⎨
⎪⎩

fX(x)/Pk Ik ,

0 otherwise .
(20)

For high-resolution conditions we can assume fq(q) = 1/∆·rect(∆) with a good
confidence. When high resolution cannot be assumed the original data pdf
must be taken into account. The distribution described by (16), for γ less than
unity, exhibit a sharp peak around the origin. Then, if the quantizer belongs
to the midtread or dead-zone class, this distribution peak falls, averaged as
in (18) with the other levels, into the fq(q); on the contrary, with midrise
quantizers the fq(q) remains uniform by construction, in fact, each fq(q|Ik) has
its symmetrical counterpart. In addition, when using dead-zone quantizers, the
non uniformity of the zero bin leads the fq(q) support to be higher than the ∆
quantization step. In the BPQ case the maximum error is twice the uniform
quantizer error with same ∆: |q|max = ∆. However, |q| > ∆/2 only for near
zero coefficients and this is reassuring from a coding and artifact perception
point of view. In Fig.9 we illustrate the above discussion, the fX(x) is processed
using (18),(19) in three different situations. The fq(q) shape depends on the
ratio of the ∆ resolution with respect to the γ-modulated fX(x) shape. In fact,
we consider three different conditions (a), (b) and (c). These may represent
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alternatively a random variable with pdf fX(x) and quantized with ∆a, ∆b and
∆c, or three different RV’s pdf (16) with (σxa , γa), (σxb

, γb), (σxc , γc) quantized
with the same ∆. Moreover, these three RV’s could also be associated to 3
subbands of the same wavelet transform, or from another point of view, to
the same subband for three different input data. We are interested to observe
that, defining a shape factor ϕ = σq/∆ (ϕ = 1/

√
12 for uniform distributions),

referring to Fig.9, ϕa < ϕb < ϕc , and that in (8) as well as in (10) we can
write:

σ2
ql,s

= ϕ2
∆,l,s · ∆2 , (21)

where
ϕ∆,l,s = ϕ(∆, (σxl,s

, γl,s)). (22)
For a certain data to be coded, eq.(21-22) show the double dependence of
the subband σ2

ql,s
from l, s and the quantization interval ∆ (which could be

different e.g. for various subband and related to the coding rate or distortion).

4.2 Reconstruction error modelling for a bit-plane based wavelet coding

We now reconsider the limitations introduced by the i.i.d. hypothesis (see
Sec.2.1) on the subband based quantization error variances σ2

ql,s
which act in

our CS model (see eqs (8), (10)). In particular we weaken the independence
assumption and observe what happens to the subband based identical distri-
bution (i.d.) from high to low bit-rates.

Statistical independence is only an ideal assumption. In order to model the
output reconstruction error as a weighted sum of the subband quantization
error (e.g. see (2) and (3)), it is sufficient to have uncorrelated subband quan-
tization error samples. Thus the original hypothesis can be reduced to a wide
sense CS (WSCS). Under the well known conditions of sufficient signal dy-
namics, low oversampling rate and lack of periodicity, a uniform quantizer
produces a highly uncorrelated error even when using few quantization levels
[22]. Due to the properties of the wavelet transform, the subbands contain
critically sampled coefficients with a low degree of correlation, ρx(n) → 0 for
n �= 0. However, at low bit rates a great amount of near zero coefficients falls
into the dead zone of the BPQ. This leads to the evidence that most quan-
tization error samples coincide with the near zero wavelet coefficients. This
fact does not pose great problems in terms of dependencies as the wavelet
coefficients are highly uncorrelated, but even if a “zero valued coefficient” cor-
relation were present, its contribution to the overall correlation ρq(1) remains
moderate. Thus it is reasonable to consider uncorrelated quantization error
between the different subbands.

Let us now track how the overall reconstruction error model changes as a
function of the bit rate. For the sake of clarity we track the model degradations
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on a discrete set of points each one reflecting a certain quantization bit-plane
b ∈ [1, B]. For a given bit plane, the associated quantization step will be
indicated as ∆b which is applied to all the coefficients of all the subbands. As
it can be expected for progressive or fine grain scalable coders, the transition
between two adjacent bit-planes descriptions can be considered gradual (thus
not explicitly described here). B corresponds to the least significant bit-plane
and thus ∆B is the finest quantization step used by the coder. This represents
the initial condition from which one can study how the model degrades. If B
is sufficiently large, one can assume that the high resolution i.i.d. conditions
are valid for the whole subband set 3 .

In such high resolution case ϕl,s is worth about 1/
√

12 and it becomes easy
to calculate the reconstruction error properties, e.g. by using (9)-(13). Specif-
ically, by considering two adjacent bit-plane, i.e. ∆b+1 = ∆b/2, one can easily
verify the classical 6dB difference e.g. between the sPSNR[n] levels along any
slicing direction:

sPSNR[n, b + 1] = sPSNR[n, b] + 6.02dB . (23)
The 6dB value relies on the fact that, with a fixed shape-factor (21), all the
σ2

ql,s
values are scaled by the same value as ∆b is halved from bit-plane b to

bit-plane b + 1.

This situation changes by decreasing the b, when a certain set of subbands
modify their quantization error shape factor ϕ value (see eq.(22)). In particular
it is possible to observe that:

ϕ2(∆b, l, s) ≤ ϕ2(∆b+1, l, s) (24)
ϕ2(∆b, l, s) ≥ ϕ2(∆b, l + 1, s) (25)

Equality holds when both terms of (24) or (25) are in high resolution condi-
tions, while when these condition degrades, a twofold trend is described. Our
qualitative observation relates principally to natural data (images or volumes
[10]) and to the considerations made in Sec.4.1 about the subband and quan-
tization error pdf models and the observations made on Fig.9. The relation
(24) actually determines a shrinking of the average sPSNR distance among
adjacent bit-planes, with respect to the 6dB rule of (23). The trend persists
until the very last bit-planes (with b near to 1) when another degeneration
occurs for extremely low bit-rates, i.e. when the reconstructed data is useless.
From inequality (25) the main effect is to introduce a certain decaying gra-
dient of the shape-factor linked to an increase of the decomposition level l.
Looking at (10) and (21) it is possible to understand how (25) determines a

3 In the next section we will show that this is not always guaranteed and the quan-
tization model could yet be degraded at the finest quantization level
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smaller contribution from the high-level detail subbands to the CS oscillation
pattern of the reconstruction error variance matrix ¯̄̄σ2

r , with respect to the
case of high resolution conditions (in this latter case, see Sec.2.3 and Fig.4,
the contribution of the high level subbands is dominant on the CS pattern).
In short, looking to the sPSNR fluctuation of (13), the presence of (25) influ-
ences its amplitude and causes a reduction whose entity can be experimentally
evaluated as shown in the next section.

5 Experimental observations and results

In the following some experiments are proposed in order to evaluate on real
data the predictions of the reconstruction error model presented in the previ-
ous sections. A first part is deserved to the sPSNR fluctuation analysis with
respect to the wavelet filter properties. Then, we discuss and show the vi-
sual impact of the sPSNR oscillations. Finally we verify the oscillation model
degradation discussed in Sec.4. The 3D data we used are mainly medical vol-
umetric data sets, coming from MR and CT 3D scanners. Visual results on a
test video sequence will be presented too. The quality measures are extracted
from single observations (intra data set) by exploiting the large number of
voxels. In fact, thanks to a statistically reliable number of samples contained
in a volume slice and to the ergodicity of the single cyclostationary compo-
nents (cycloergodicity) of the cube, we can compare our statistical analysis
with a single realization analysis. In particular, estimated values of sMSEi

r[n]
can be compared with the measured smsei

r[n, x, x̂], where for example:

smse0
r [n, x, x̂] =

1

D1D2

D1−1∑
n1=0

D2−1∑
n2=0

(x[n, n1, n2] − x̂[n, n1, n2])
2 (26)

with Di=0,1,2 the size of the volume in voxels.

If not differently indicated, the progressive bit-plane based coding algorithm
used for the following experiments is the the 3D version of our EMDC (Em-
bedded Morphological Dilation Coding) algorithm [12,?].

5.1 Error fluctuations and filter properties

The main objective of the following experiment is to verify the fluctuation
model of Sec.3 and highlight the differences between even and odd length
biorthogonal wavelet filters. For the test we selected the 9/7 and the 10/18
filter banks due to their widely recognized good coding performances. In
Fig.10(a)-(d) we show the sPSNR measures associated to the considered filters
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Fig. 10. Comparison between coding with 9/7 filters (widest extent oscillation) and
10/18 ones, for the (256x256)x128 slice MR-brainSag volume. In (a) and (b) the
sPSNR curves are measured along the scanning axis; in (c) and (d) a windowed
portion of the same curves is measured along the no axis. (a) and (c) correspond to
10 bit-plane coding, while (b) and (d) correspond to a 0.4 bpv target rate.

for the MR volume MR-brainSag 256x256x128. The diagrams refer to the
four resulting combinations when considering two coding-rates and two slicing
directions.

The selected slicing directions are the original one, which is perpendicular to
the sagittal plane (128 slices along n2), and the coronal one (256 slices along
n0). The sagittal anatomical symmetry leads to a U-shaped distortion main
trend along the n2 axis which is essentially linked to the space occupied by
the MR brain signal with respect to the noisy background, at each slicing
position. The sPSNR oscillation due to the 9/7 filers is clearly visible. The
same oscillatory behavior appears along the n0 slicing direction as shown in
Fig.10(c) and (d) where few slices are considered allowing a more detailed
view. Even if not shown, along n1 we oserved the same things. The sPSNR

oscillation is regular, very similar to that of Fig.8 and of the order of 0.6-0.8
dB for the 9/7 filters. On the contrary, using the 10/18 filters the oscillation
contracts to less than 0.1 dB, blurring itself into the data dependent (entropic)
fluctuations. At this point we also want to show that the oscillating behavior
doesn’t depend on particular choices of the coding rates or algorithmic coding
steps. To show this, we selected a first test point corresponding to the tenth
bit-plane completion by the coding algorithm 4 and a nearby one, which falls

4 In this case we coded 10 bit-planes over a total of 14. The resulting DWT coef-
ficient range is strongly data-dependent. Considering a rounding approximation of
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in a non-specific bitstream location between the 9-th and the 10-th bit-plane.
Fig.10(a) and (c) are related to the first test point, while Fig.10(b) and (d)
correspond to the second one. As it will be shown in the next section, variations
of the coding rate does not substantially change the nature and amplitude of
the sPSNR fluctuation for a wide range of rates of interest.// From Fig.10 we
also discover that 10/18 filters perform better than 9/7 filters not only for
the oscillation amplitude but also in terms of mean value, in contrast with
the high resolution predictions shown in Fig.8. As already anticipated this is
due to better approximation properties of 10/18 filters with respect to the
data data considered here, which in turn influences the reconstruction error
statistics and allows higher performance.

5.2 Visual perception of the sPSNR oscillations

Volumetric static (medical) data-set are usually visualized, on wide and high
definition displays that reproduce a lightbox where slices appears joined to
form a single view. Another usual way to see such data is the movie loop
where slices are "played" with a low reproduction rate or more commonly
by manual navigation. In this section we try to determine in which measure
sPSNR oscillations are related to unpleasant visual effects when, as stated,
consecutive slices are displayed one near or after another. Moreover, due to
the relevance of the subject, we are also interested in what happen in the
thickening case of motion compensated wavelet video coding.

Due to the intrinsic difficulty to give numerical results about the visual per-
ception, we give observations and example that, according to our experience,
can be taken as representative of different issues and situations.

• First of all, we never saw any sPSNR related visual effects when using even
length wavelet filters (such as 10/18 or 22/14).

• When the odd length 9/7 filters are used potentially visible effects arises,
which visibility depends on data, display conditions and devices and on
the viewer expertise. In the case of medical data our general suggestion
is to avoid using 9/7 filters. In our view, producing coded data with a
significant sPSNR oscillation can decrease the overall quality and reliability
of the data itself. For example, with respect to an agreed compression level,
apparently hidden visual effects could reveal themselves in some detailed
data observations, or post-processing results could be affected by the quality
oscillation.

• When the short odd length filters (see Fig.8) are used the visual effects of
the induced sPSNR oscillation are always noticeable, even at a non-expert

the wavelet coefficients to the nearest integer an 8 bit/pixel image generates a DWT
coefficient range of 14 bits.
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sight. We observed objectionable effects both in the case of static volumes
and video coding. In the following we document those cases.

In Fig.11 we show 4 contiguous slices of the 256x256x128 MR data-set MR-
brainCor. Slices are taken along the n1 (i.e. y) direction. The 3D wavelet
transform is calculated using the 9/3 filter bank along each direction. The
coding rate is 0.27 bpv (compression ratio CR=30). Fig.12 refers to the same
decoded volume but sliced along the n0 (i.e. x) direction. Differences between
upper and lower images can be quite easily perceived on display and on printed
paper (with adequate printing quality). Upper images are more detailed while
the lower ones are more blurred. Even if, at a first sight, this quality difference
could not be considered significative, we observed that when we allow expert
(physicians or image processing professionals) or non-expert viewers to look
through the various slice of the whole volume with a manual back and forth
movie facility, they all was able, in few seconds, to state that there was a
quality alternation between consecutive slices. In Fig.13 (see the two upper
signals) we show the sPSNR signals measured on the decoded data-set accord-
ing to the two considered slicing directions. In order to give a more clear figure
we restricted the viewing area to a slice interval (from slice nr. 70 to nr. 140).

We complete our analysis on visual impacts of the use of odd length wavelet
filters, by considering a representative case of wavelet video coding. Wavelet
based video coding intrinsically enables a series of interesting features such as
spatio-temporal and quality scalability that are of particular interest for today
multimedia and networking applications. Moreover efficient Motion Compen-
sation Temporal Filtering (MCTF) solutions [21] allowed Scalable wavelet
video Coding to reach performances comparable to that of the best video
coding standards (AVC-H.264). Typical decoded videos generated by wavelet
video codecs present periodic oscillations in the time direction (here the only
one direction of interest). The bottom trace in Fig.13 reports the sPSNR (i.e.
the frame by frame PSNR) in the case of a decoded test sequence. We used
our wavelet based scalable video codec [32] on the Harbour sequence (in QCIF
and YUV 4:2:0 format) at at the coding rate of 92kbps. The 3D decomposi-
tion is not purely dyadic but a complete temporal decomposition (MCTF with
5/3 integer lifting wavelet decomposition) is followed by a 9/7 dyadic wavelet
spatial decomposition performed on each temporal subband frame. Such de-
composition structure is typical in video coding systems, where the 5/3 filters
are commonly used for their recognized good matching between a reliable mo-
tion estimation (very similar to the bidirectional motion estimation of hybrid
schemes) and the availability of related efficient MCTF implementations [21].
The sPSNR oscillation of Fig.13 evidences the presence of CS phenomena of
a significant entity (compatible with the use of 5/3 filters). However, because
of the differences between our assumptions and the video coding architecture,
the oscillation pattern differs from that issued by our 3D model. We quickly
itemize such differences, but first we show how visually can differ two con-
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secutive frames due to the sPSNR variations. This is shown Fig.14 where two
original and the relating decoded frames (at 92 kpbs)are presented. The qual-
ity disparity is evident and the PSNR jump in this case is of the order of
5dB indeed. The two selected frames are representative of the worse situation,
however, quality alternation is actually visible along the whole video when
manual frame selection or very low frame rate reproduction are used.

A quantitative analysis of the video coding case study is beyond the scope of
this work. A series of factors can apparently influence the CS pattern oscilla-
tion (e.g. the decomposition structure, the MCTF, different basis for spatial
and temporal filtering, different subband weighing), however the more signifi-
cant one is the common use of an integer to integer non-linear lifting wavelet
decomposition 5 which has been demonstrated to introduce CS error fluctu-
ations [8]. In this case fluctuations are due to the non-linear rounding noise
propagation effects produced into the lifting computation structure. Even if
in [8] CS fluctuations are not described in the data domain, we can infer that
when integer to integer transforms are used two ciclostationarity contribu-
tions (due to linear and non-linear effects) adds up to produce the overall CS
oscillation pattern.

5.3 Bit-plane model degradation

We propose a final test in order to find experimental evidence of the oscillation
model degradation described in Sec.4. In particular we want to show how some
features of the data to be coded have an influence on the sPSNR behavior.
We premise that a correct interpretation of the following coding results must
consider all aspects deriving from (21)-(25) at the same time. In Fig.15(a)
we analyze the case of the MR-brainCor volume, with a xyz dimension of
256x256x64 voxels. 9/7 filers on 5 levels of 3D wavelet decomposition have
been used. We considered the bit-planes b from 1 to 12 and observed the
sPSNR values after each bit-plane coding completion. The sPSNR signal was
calculated along the MR scanning axis n2 (or z). For the higher bit-planes 11
and 12 we can recognize the high resolution condition: the expected sPSNR

fluctuations (see 3.2) and the 6dB distance of the curves. In the range from
5 to 10 bit-planes the sPSNR curves become closer owing to (24). The CS
oscillation diminishes but another pseudo-periodic fluctuation gains ground,
with a sort of symmetry center on the slice 34. This effect does not find an
explanation in some anatomical symmetry (the considered MR-brainCor
data-set is coronal, i.e. acquired along the frontal direction), but it is rather

5 The use of Integer to Integer Wavelet Transforms allows to preserve memory and
decrease the computational cost. Both these are critical factors when considering
the processing of a huge quantity of data, as in the case of video coding.
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Fig. 11. Visual results on MR-brainCor along the y slicing direction.

due to an interpolation related effect. In fact the 64 slices volume has been
intentionally obtained from a 141 slices original one. This subsampling implies
an "entropic alteration" of the slices which are governed by the resampling
ratio. We don’t want to study the details of this effect, but only observe that
in this case, as a consequence of (25), the CS fluctuations become gradually
secondary and another effect may dominate.

In Fig.15(b) we give another example in which a CT-abdomen 256x256x64
volume decomposition is considered, still using 9/7 filters and a 5 level decom-
position. In this case only CS related fluctuations take place because (original,
non interpolated, data has been used). Obviously the short-range CS varia-
tions are superimposed to the trend determined by the sensibility of the coding
algorithm to the data "information content" on every slicing plane. This long-
range fluctuation trend is a passive outcome and does not affect the visual
quality of salient information because the coding effort is not made inten-
tionally selective. From Fig.15(b) we can observe that, as far as the bit-plane
sPSNR distance is concerned, the high-resolution conditions are not satisfied
from the beginning, while the amplitude of the CS fluctuations have a value
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Fig. 12. Visual results on MR-brainCor along the x slicing direction.

around 0.8dB (concording with the high-resolution prediction) for several b
values (from 9 to 12). Then the fluctuation model degrades in a different way
for the two considered, equally sized, volumes. This evidences and confirm
the hypothesis of a data depended model degradation, where high-frequency
content or noise level are determinant features. In general and also in our case,
CT data-set are less noisy compared to the MR ones. As a consequence CT re-
lated high-level detail subband histograms are more concentrated on the zero
peak, and this determines a populated set of subbands for which (24) and (25)
holds with inequality, even for near-lossless coding conditions. As mentioned
the sPSNR oscillation reduces its amplitude but does not remain negligible
until the eighth bit-plane is reached. In our experience the rates of interest for
the lossy coding of MR and CT data-sets falls between the 9-th and the 11-th
bit-plane, thus at the peak of the oscillation.
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Fig. 14. Visual results on a test video.
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Fig. 15. sPSNR curves as a function of the bit-plane number b, for 9/7 filters, along
the scanning axis of the 64 slice volumes MR-brainCor (a) and CT-abdomen

(b).

6 Conclusions

Being the volume slices at adjacent position quite similar one with respect to
the other, an appreciable PSNR oscillation due to the reconstruction process
may be critical at all rates, causing objectionable artifacts and/or lowering the
reliability of the coding process. In the first part of this work, the simplifying
hypothesis on the quantization error was used to highlight the fundamental CS
nature of the reconstruction error and to give a correct interpretation to the
presence of a PSNR oscillation. We have observed that a structural property
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of biorthogonal even length filters allows to contain such oscillation, making
this filter class more attractive e.g. for medical data coding. In addition this
paper has proposed a degradation analysis of the quantization error and data
models towards low bit-rate conditions. It has been shown that the oscillation
phenomenon is gradually reduced but is still present at medium to low bit-
rates.

...
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