We study the linear stability of contact discontinuities for the nonisentropic compressible Euler equations in two space dimensions. Assuming the jump of the tangential velocity across the discontinuity surface is sufficiently large, we derive a suitable energy estimate for the linearized boundary value problem. The found estimate extends to nonisentropic compressible flows the main result of Coulombel–Secchi for the isentropic Euler equations. Compared with this latter case, when the jump of the tangential velocity of the unperturbed flow attains a certain critical value in the region of weak stability, here an additional loss of regularity appears; this is related to the presence of a double root of the Lopatinskii determinant associated to the problem.

Two-dimensional vortex sheets for the nonisentropic Euler equations: linear stability

MORANDO, Alessandro;TREBESCHI, Paola
2008-01-01

Abstract

We study the linear stability of contact discontinuities for the nonisentropic compressible Euler equations in two space dimensions. Assuming the jump of the tangential velocity across the discontinuity surface is sufficiently large, we derive a suitable energy estimate for the linearized boundary value problem. The found estimate extends to nonisentropic compressible flows the main result of Coulombel–Secchi for the isentropic Euler equations. Compared with this latter case, when the jump of the tangential velocity of the unperturbed flow attains a certain critical value in the region of weak stability, here an additional loss of regularity appears; this is related to the presence of a double root of the Lopatinskii determinant associated to the problem.
File in questo prodotto:
File Dimensione Formato  
articolo.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 464.06 kB
Formato Adobe PDF
464.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/28572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact