The Hallopeau-Siemens variant of recessive dystrophic epidermolysis bullosa (HS-RDEB) is a severe inherited skin disease characterized by the absence of collagen type VII (COLVII) and anchoring fibrils (AF), caused by mutations in collagen type VII gene (COL7A1). Mutations leading to the formation of premature termination codons (PTCs) of translation are the characteristic genetic lesions in HS-RDEB patients; many PTC mutations have been found to be associated with a marked reduction or complete absence of COLVII mRNA. In this article, we report homozygosity for three different mutations in the COL7A1 of HS-RDEB patients. One mutation, the R2685X, falling in exon 109, is a novel mutation, whereas the other two, the 425A-->G falling in exon 3 and the 497insA in exon 4, have been previously identified in compound heterozygosity with different mutations in other unrelated RDEB patients. Haplotype analysis in three Italian families carrying the 497insA mutation suggested a common origin of this mutation and indicated that this is an ancestral Italian mutation. All these mutations generate PTCs and are associated with the absence of COLVII expression, as detected by immunofluorescence analysis of the patient's skin. Evaluation of the levels of the mutated COLVII mRNAs in cultured skin fibroblasts of the patients and of their parents showed that all the mutated transcripts were expressed at consistent levels. Therefore, our results indicate that a marked mRNA reduction is not a constant feature associated with PTC mutations in COL7A1.
Three homozygous PTC mutations in the collagen type VII gene of patients affected by recessive dystrophic epidermolysis bullosa: analysis of transcript levels in dermal fibroblasts
GARDELLA, Rita;ZOPPI, Nicoletta;FERRABOLI, Sergio;MARINI, Dario Camillo Cesare;BARLATI, Sergio;COLOMBI, Marina
1999-01-01
Abstract
The Hallopeau-Siemens variant of recessive dystrophic epidermolysis bullosa (HS-RDEB) is a severe inherited skin disease characterized by the absence of collagen type VII (COLVII) and anchoring fibrils (AF), caused by mutations in collagen type VII gene (COL7A1). Mutations leading to the formation of premature termination codons (PTCs) of translation are the characteristic genetic lesions in HS-RDEB patients; many PTC mutations have been found to be associated with a marked reduction or complete absence of COLVII mRNA. In this article, we report homozygosity for three different mutations in the COL7A1 of HS-RDEB patients. One mutation, the R2685X, falling in exon 109, is a novel mutation, whereas the other two, the 425A-->G falling in exon 3 and the 497insA in exon 4, have been previously identified in compound heterozygosity with different mutations in other unrelated RDEB patients. Haplotype analysis in three Italian families carrying the 497insA mutation suggested a common origin of this mutation and indicated that this is an ancestral Italian mutation. All these mutations generate PTCs and are associated with the absence of COLVII expression, as detected by immunofluorescence analysis of the patient's skin. Evaluation of the levels of the mutated COLVII mRNAs in cultured skin fibroblasts of the patients and of their parents showed that all the mutated transcripts were expressed at consistent levels. Therefore, our results indicate that a marked mRNA reduction is not a constant feature associated with PTC mutations in COL7A1.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.