We consider the initial-boundary value problem for linear Friedrichs symmetrizable systems with characteristic boundary of constant rank. We assume the existence of the strong L^2 solution satisfying a suitable energy estimate, but we do not assume any structural assumption sufficient for existence, such as the fact that the boundary conditions are maximally dissipative or the Kreiss–Lopatinski condition. We show that this is enough in order to get the regularity of solutions, in the natural framework of weighted anisotropic Sobolev spaces, provided the data are sufficiently smooth.

Regularity of solutions to characteristic initial-boundary value problems for symmetrizable systems

MORANDO, Alessandro;SECCHI, Paolo;TREBESCHI, Paola
2009-01-01

Abstract

We consider the initial-boundary value problem for linear Friedrichs symmetrizable systems with characteristic boundary of constant rank. We assume the existence of the strong L^2 solution satisfying a suitable energy estimate, but we do not assume any structural assumption sufficient for existence, such as the fact that the boundary conditions are maximally dissipative or the Kreiss–Lopatinski condition. We show that this is enough in order to get the regularity of solutions, in the natural framework of weighted anisotropic Sobolev spaces, provided the data are sufficiently smooth.
File in questo prodotto:
File Dimensione Formato  
S021989160900199X.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 697.27 kB
Formato Adobe PDF
697.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/26732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 25
social impact