We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder $\precsim$ is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.
EXISTENCE OF MAXIMAL ELEMENTS OF SEMICONTINUOUS PREORDERS
ZUANON, Magali Ernestine;
2013-01-01
Abstract
We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder $\precsim$ is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BosiZuanonIJMA21-24-2013.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
74.55 kB
Formato
Adobe PDF
|
74.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.