We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder $\precsim$ is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.

EXISTENCE OF MAXIMAL ELEMENTS OF SEMICONTINUOUS PREORDERS

ZUANON, Magali Ernestine;
2013-01-01

Abstract

We discuss the existence of an upper semicontinuous multi-utility representation of a preorder on a topological space. We then prove that every weakly upper semicontinuous preorder $\precsim$ is extended by an upper semicontinuous preorder and use this fact in order to show that every weakly upper semicontinuous preorder on a compact topological space admits a maximal element.
File in questo prodotto:
File Dimensione Formato  
BosiZuanonIJMA21-24-2013.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 74.55 kB
Formato Adobe PDF
74.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/183901
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact