In this paper we study the long-term dynamics of a nonlinear suspension bridge system. The road bed and the main cable are modeled as a nonlinear beam and a vibrating string, respectively, and their coupling is carried out by one--sided springs. First, we scrutinize the set of stationary solutions, which turns out to be nontrivial when the axial load exceeds some critical value. Then, we prove the existence of a bounded global attractor of optimal regularity and we give its characterization in terms of the steady states of the problem.
Long-term dynamics of the coupled suspension bridge system
GIORGI, Claudio;VUK, Elena
2012-01-01
Abstract
In this paper we study the long-term dynamics of a nonlinear suspension bridge system. The road bed and the main cable are modeled as a nonlinear beam and a vibrating string, respectively, and their coupling is carried out by one--sided springs. First, we scrutinize the set of stationary solutions, which turns out to be nontrivial when the axial load exceeds some critical value. Then, we prove the existence of a bounded global attractor of optimal regularity and we give its characterization in terms of the steady states of the problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BGV_M3AS_Bridge.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
373.75 kB
Formato
Adobe PDF
|
373.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.