Variable selection is one of the main problems faced by data mining and machine learning techniques. These techniques are often, more or less explicitly, based on some measure of variable importance. This paper considers Total Decrease in Node Impurity (TDNI) measures, a popular class of variable importance measures defined in the field of decision trees and tree-based ensemble methods, like Random Forests and Gradient Boosting Machines. In spite of their wide use, some measures of this class are known to be biased and some correction strategies have been proposed. The aim of this paper is twofold. Firstly, to investigate the source and the characteristics of bias in TDNI measures using the notions of informative and uninformative splits. Secondly, a bias-correction algorithm, recently proposed for the Gini measure in the context of classification, is extended to the entire class of TDNI measures and its performance is investigated in the regression framework using simulated and real data.

Analysis and correction of bias in the Total Decrease in Node Impurity measures for tree-based algorithms

ZUCCOLOTTO, Paola;SANDRI, Marco
2010-01-01

Abstract

Variable selection is one of the main problems faced by data mining and machine learning techniques. These techniques are often, more or less explicitly, based on some measure of variable importance. This paper considers Total Decrease in Node Impurity (TDNI) measures, a popular class of variable importance measures defined in the field of decision trees and tree-based ensemble methods, like Random Forests and Gradient Boosting Machines. In spite of their wide use, some measures of this class are known to be biased and some correction strategies have been proposed. The aim of this paper is twofold. Firstly, to investigate the source and the characteristics of bias in TDNI measures using the notions of informative and uninformative splits. Secondly, a bias-correction algorithm, recently proposed for the Gini measure in the context of classification, is extended to the entire class of TDNI measures and its performance is investigated in the regression framework using simulated and real data.
File in questo prodotto:
File Dimensione Formato  
Analysis and correction of bias in tree-based algorithms - STCO - Sandri Zuccolotto.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 666.77 kB
Formato Adobe PDF
666.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/9029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
social impact