Over millions of years of interactions, plants have developed complex defense mechanisms to counteract diverse insect herbivory strategies. These defenses encompass morphological, biochemical, and molecular adaptations that mitigate the impacts of herbivore attacks. Physical barriers, such as spines, trichomes, and cuticle layers, deter herbivores, while biochemical defenses include the production of secondary metabolites and volatile organic compounds (VOCs). The initial step in the plant's defense involves sensing mechanical damage and chemical cues, including herbivore oral secretions and herbivore-induced VOCs. This triggers changes in plasma membrane potential driven by ion fluxes across plant cell membranes, activating complex signal transduction pathways. Key hormonal mediators, such as jasmonic acid, salicylic acid, and ethylene, orchestrate downstream defense responses, including VOC release and secondary metabolites biosynthesis. This review provides a comprehensive analysis of plant responses to herbivory, emphasizing early and late defense mechanisms, encompassing physical barriers, signal transduction cascades, secondary metabolites synthesis, phytohormone signaling, and epigenetic regulation.

Plant Defense Responses to Insect Herbivores Through Molecular Signaling, Secondary Metabolites, and Associated Epigenetic Regulation

Mastinu A.
Writing – Review & Editing
2025-01-01

Abstract

Over millions of years of interactions, plants have developed complex defense mechanisms to counteract diverse insect herbivory strategies. These defenses encompass morphological, biochemical, and molecular adaptations that mitigate the impacts of herbivore attacks. Physical barriers, such as spines, trichomes, and cuticle layers, deter herbivores, while biochemical defenses include the production of secondary metabolites and volatile organic compounds (VOCs). The initial step in the plant's defense involves sensing mechanical damage and chemical cues, including herbivore oral secretions and herbivore-induced VOCs. This triggers changes in plasma membrane potential driven by ion fluxes across plant cell membranes, activating complex signal transduction pathways. Key hormonal mediators, such as jasmonic acid, salicylic acid, and ethylene, orchestrate downstream defense responses, including VOC release and secondary metabolites biosynthesis. This review provides a comprehensive analysis of plant responses to herbivory, emphasizing early and late defense mechanisms, encompassing physical barriers, signal transduction cascades, secondary metabolites synthesis, phytohormone signaling, and epigenetic regulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/633145
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact