The integration of gold nanoparticles (AuNPs) with lipid bilayers gives rise to powerful synergistic effects arising from nanoscale interactions. Precise control over these interactions enables the rational design of hybrid AuNP-lipid membrane multifunctional composites, unlocking advanced analytical tools and cutting-edge biomedical applications. From a materials design standpoint, functionalizing AuNPs with lipid membranes reduces cytotoxicity and enhances stability in complex biological environments. This biomimetic strategy also enables precise modulation of interactions at biological interfaces, opening new avenues to endow AuNPs with selective recognition and targeting abilities. Importantly, the combination leads to emergent collective behaviors. For instance, the self-assembly of AuNPs on lipid membranes creates plasmonic ‘hot spots’ that amplify Raman signals for ultrasensitive SERS-based diagnostics. Membrane-embedded AuNPs can also act as nanoscale heaters, enabling spatiotemporally controlled drug release through light-triggered lipid phase transitions or nanomechanical disruption of the lipid carriers. Furthermore, membrane-mediated AuNP clustering enhances magnetic, catalytic, and optical responses, contributing to the development of smart nanomotors and multifunctional therapeutic platforms. These synergistic functionalities arise specifically from the interplay between AuNPs and lipid architectures and cannot be replicated by either system alone. This review critically explores the functional synergy between AuNPs and lipid membranes, highlights recent key advancements, addresses current challenges, and outlines innovative applications in nanomedicine, including targeted drug delivery, photothermal therapy, and biomolecular sensing.

The gold nanoparticle–lipid membrane synergy for nanomedical applications

Paolini, Lucia;Zendrini, Andrea;Bergese, Paolo;
2025-01-01

Abstract

The integration of gold nanoparticles (AuNPs) with lipid bilayers gives rise to powerful synergistic effects arising from nanoscale interactions. Precise control over these interactions enables the rational design of hybrid AuNP-lipid membrane multifunctional composites, unlocking advanced analytical tools and cutting-edge biomedical applications. From a materials design standpoint, functionalizing AuNPs with lipid membranes reduces cytotoxicity and enhances stability in complex biological environments. This biomimetic strategy also enables precise modulation of interactions at biological interfaces, opening new avenues to endow AuNPs with selective recognition and targeting abilities. Importantly, the combination leads to emergent collective behaviors. For instance, the self-assembly of AuNPs on lipid membranes creates plasmonic ‘hot spots’ that amplify Raman signals for ultrasensitive SERS-based diagnostics. Membrane-embedded AuNPs can also act as nanoscale heaters, enabling spatiotemporally controlled drug release through light-triggered lipid phase transitions or nanomechanical disruption of the lipid carriers. Furthermore, membrane-mediated AuNP clustering enhances magnetic, catalytic, and optical responses, contributing to the development of smart nanomotors and multifunctional therapeutic platforms. These synergistic functionalities arise specifically from the interplay between AuNPs and lipid architectures and cannot be replicated by either system alone. This review critically explores the functional synergy between AuNPs and lipid membranes, highlights recent key advancements, addresses current challenges, and outlines innovative applications in nanomedicine, including targeted drug delivery, photothermal therapy, and biomolecular sensing.
File in questo prodotto:
File Dimensione Formato  
Caselli et al. Rev AuNPs-Lipid synergy.pdf

accesso aperto

Licenza: Non specificato
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/633046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact