This study investigates the operation and management of an advanced Italian liquid waste treatment platform, focusing on its dual-line configuration and the challenges posed by increasingly heterogeneous waste streams. The main objectives are to (i) characterize the technological and operational features of the system, (ii) evaluate strategies for dealing with variable waste compositions and non-compliant inputs, and (iii) propose governance measures to strengthen cooperation between producers and operators. The methodology integrates the analysis of operational data from 2022 to 2024 (waste volumes, European Waste Catalogue Codes, reagent consumption, sludge production, and energy use) with a critical assessment of acceptance procedures and monitoring protocols. Results show a 10% increase in liquid waste treated over the study period, a growing predominance of complex EWC codes, higher oxygen demand in the thermophilic reactor, and seasonal fluctuations in sludge production. At the same time, the plant achieved stable or improved performance indicators, with specific energy consumption decreasing to 2.08 kWh/kg COD removed in 2024. The study concludes that modular, flexible treatment systems, supported by rigorous waste characterization and real-time decision-making, are essential to ensuring efficiency, regulatory compliance, and long-term environmental sustainability in liquid waste management.
Operational Criteria and Challenges in Management of Liquid Waste Treatment Facility Based on Chemical–Physical Processes and Membrane Biological Reactor in Thermophilic Conditions: A Case Study
Alessandro Abba'
2025-01-01
Abstract
This study investigates the operation and management of an advanced Italian liquid waste treatment platform, focusing on its dual-line configuration and the challenges posed by increasingly heterogeneous waste streams. The main objectives are to (i) characterize the technological and operational features of the system, (ii) evaluate strategies for dealing with variable waste compositions and non-compliant inputs, and (iii) propose governance measures to strengthen cooperation between producers and operators. The methodology integrates the analysis of operational data from 2022 to 2024 (waste volumes, European Waste Catalogue Codes, reagent consumption, sludge production, and energy use) with a critical assessment of acceptance procedures and monitoring protocols. Results show a 10% increase in liquid waste treated over the study period, a growing predominance of complex EWC codes, higher oxygen demand in the thermophilic reactor, and seasonal fluctuations in sludge production. At the same time, the plant achieved stable or improved performance indicators, with specific energy consumption decreasing to 2.08 kWh/kg COD removed in 2024. The study concludes that modular, flexible treatment systems, supported by rigorous waste characterization and real-time decision-making, are essential to ensuring efficiency, regulatory compliance, and long-term environmental sustainability in liquid waste management.| File | Dimensione | Formato | |
|---|---|---|---|
|
sustainability-17-07928.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


