In this paper we consider achieving the largest principle eigenvalue of a Robin Laplacian on a bounded domain Ω by optimizing the Robin parameter function under an integral constraint. The main novelty of our approach lies in establishing a close relation between the problem under consideration and the asymptotic behavior of the Dirichlet heat content of Ω. By using this relation, we deduce a two-term asymptotic expansion of the principle eigenvalue and discuss several applications.

Optimizing the Ground-State Energy of a Robin Laplacian: Asymptotic Behavior

Kovarik, Hynek
2025-01-01

Abstract

In this paper we consider achieving the largest principle eigenvalue of a Robin Laplacian on a bounded domain Ω by optimizing the Robin parameter function under an integral constraint. The main novelty of our approach lies in establishing a close relation between the problem under consideration and the asymptotic behavior of the Dirichlet heat content of Ω. By using this relation, we deduce a two-term asymptotic expansion of the principle eigenvalue and discuss several applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/631983
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact