As a generalization of the symmetry of the stress tensor of continuum mechanics, the paper investigates symmetry properties arising in models of magneto- and electro-mechanical interaction. First, the balance of angular momentum is considered, thus obtaining a symmetry condition that is applied as a mathematical constraint on admissible constitutive equations. Next, thermodynamic restrictions are also investigated and, among others, a further symmetry condition is determined. The joint validity of the two symmetry conditions implies that the dependence on electromagnetic fields has to be through variables involving deformation gradients. These variables constitute two classes that prove to be Euclidean invariants. The simplest selection of the variables is just that of Lagrangian fields in the literature. Furthermore, the variables of one class allow a positive magnetostriction and of the other one allow a negative magnetostriction. Some applications to (NO) Fe-Si are outlined. The use of entropy production as a constitutive function allows generalization to dissipative and heat-conducting electromagnetic solids.

On Symmetry Properties of Tensors for Electromagnetic Deformable Solids

Giorgi, Claudio
2025-01-01

Abstract

As a generalization of the symmetry of the stress tensor of continuum mechanics, the paper investigates symmetry properties arising in models of magneto- and electro-mechanical interaction. First, the balance of angular momentum is considered, thus obtaining a symmetry condition that is applied as a mathematical constraint on admissible constitutive equations. Next, thermodynamic restrictions are also investigated and, among others, a further symmetry condition is determined. The joint validity of the two symmetry conditions implies that the dependence on electromagnetic fields has to be through variables involving deformation gradients. These variables constitute two classes that prove to be Euclidean invariants. The simplest selection of the variables is just that of Lagrangian fields in the literature. Furthermore, the variables of one class allow a positive magnetostriction and of the other one allow a negative magnetostriction. Some applications to (NO) Fe-Si are outlined. The use of entropy production as a constitutive function allows generalization to dissipative and heat-conducting electromagnetic solids.
File in questo prodotto:
File Dimensione Formato  
symmetry-17-00557-v2.pdf

accesso aperto

Descrizione: Copia di stampa
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 4.0
Dimensione 582.49 kB
Formato Adobe PDF
582.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/625807
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact