Nanoparticles consisting of metal–organic frameworks (NMOFs) modified with nucleic acid binding strands are synthesized. The NMOFs are loaded with a fluorescent agent or with the anticancer drug doxorubicin, and the loaded NMOFs are capped by hybridization with a complementary nucleic acid that includes the ATP-aptamer or the ATP-AS1411 hybrid aptamer in caged configurations. The NMOFs are unlocked in the presence of ATP via the formation of ATP-aptamer complexes, resulting in the release of the loads. As ATP is overexpressed in cancer cells, and since the AS1411 aptamer recognizes the nucleolin receptor sites on the cancer cell membrane, the doxorubicin-loaded NMOFs provide functional carriers for targeting and treatment of cancer cells. Preliminary cell experiments reveal impressive selective permeation of the NMOFs into MDA-MB-231 breast cancer cells as compared to MCF-10A normal epithelial breast cells. High cytotoxic efficacy and targeted drug release are observed with the ATP-AS1411-functionalized doxorubicin-loaded NMOFs.

ATP-Responsive Aptamer-Based Metal–Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs

Cecconello A.;
2017-01-01

Abstract

Nanoparticles consisting of metal–organic frameworks (NMOFs) modified with nucleic acid binding strands are synthesized. The NMOFs are loaded with a fluorescent agent or with the anticancer drug doxorubicin, and the loaded NMOFs are capped by hybridization with a complementary nucleic acid that includes the ATP-aptamer or the ATP-AS1411 hybrid aptamer in caged configurations. The NMOFs are unlocked in the presence of ATP via the formation of ATP-aptamer complexes, resulting in the release of the loads. As ATP is overexpressed in cancer cells, and since the AS1411 aptamer recognizes the nucleolin receptor sites on the cancer cell membrane, the doxorubicin-loaded NMOFs provide functional carriers for targeting and treatment of cancer cells. Preliminary cell experiments reveal impressive selective permeation of the NMOFs into MDA-MB-231 breast cancer cells as compared to MCF-10A normal epithelial breast cells. High cytotoxic efficacy and targeted drug release are observed with the ATP-AS1411-functionalized doxorubicin-loaded NMOFs.
File in questo prodotto:
File Dimensione Formato  
Adv Funct Materials - 2017 - Chen - ATP‐Responsive Aptamer‐Based Metal Organic Framework Nanoparticles NMOFs for the.pdf

gestori archivio

Licenza: DRM non definito
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/623953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 129
social impact