: Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.
miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma
Fanzani, Alessandro;
2025-01-01
Abstract
: Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs). In this study, we identify miRNAs impacting FN-RMS cell identity, revealing miR-449a and miR-340 as major regulators of the cell cycle and p53 signaling. Through miR-eCLIP technology, we demonstrate that miR-449a and miR-340 directly target transcripts involved in glycolysis and mitochondrial pyruvate transport, inhibiting the mitochondrial pyruvate carrier (MPC) complex. Pharmacological MPC inhibition induces a similar metabolic shift, reducing metastatic potential and leading to cell cycle exit. Overall, miR-449 and miR-340 orchestrate FN-RMS cell identity, positioning MPC inhibition as a strategy to shift FN-RMS cells toward a non-tumorigenic, quiescent state.File | Dimensione | Formato | |
---|---|---|---|
Cell Reports.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
Dominio pubblico
Dimensione
6.63 MB
Formato
Adobe PDF
|
6.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.