The development of new materials for the controlled release of molecules represents a topic of primary importance in medicine, as well as in food science. In recent years, eutectic solvents have been applied as releasing media due to their improved capacity to interact with specific molecules, offering a broad range of tunability. Nevertheless, their application in essential oil dissolution are rare and more data are needed to develop new generations of effective systems. Herein, three eutectic systems, respectively, composed of choline chloride and ethylene glycol (1:2 molar ratio), methyltriphenylphosphonium bromide and ethylene glycol (molar ratio 1:5), and choline chloride and glycerol (molar ratio 1:1.5) were tested as materials for the controlled release of an essential oil derived from Citrus lemon leaves. Through static headspace fractionation, followed by gas chromatographic analysis, the performances of the three systems were assessed. The specific composition of DESs was pivotal in determining the releasing polar molecules as aldehydes and alcohols. A sustainability ranking based on the EcoScale tool highlighted the superior characteristics of the choline chloride-glycerol DES.

The Impact of Selected Eutectic Solvents on the Volatile Composition of Citrus lemon Essential Oil

Mannu A.
2024-01-01

Abstract

The development of new materials for the controlled release of molecules represents a topic of primary importance in medicine, as well as in food science. In recent years, eutectic solvents have been applied as releasing media due to their improved capacity to interact with specific molecules, offering a broad range of tunability. Nevertheless, their application in essential oil dissolution are rare and more data are needed to develop new generations of effective systems. Herein, three eutectic systems, respectively, composed of choline chloride and ethylene glycol (1:2 molar ratio), methyltriphenylphosphonium bromide and ethylene glycol (molar ratio 1:5), and choline chloride and glycerol (molar ratio 1:1.5) were tested as materials for the controlled release of an essential oil derived from Citrus lemon leaves. Through static headspace fractionation, followed by gas chromatographic analysis, the performances of the three systems were assessed. The specific composition of DESs was pivotal in determining the releasing polar molecules as aldehydes and alcohols. A sustainability ranking based on the EcoScale tool highlighted the superior characteristics of the choline chloride-glycerol DES.
File in questo prodotto:
File Dimensione Formato  
260_materials-17-05288-v2.pdf

gestori archivio

Licenza: DRM non definito
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/622025
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact