Zeotropic CO2-based mixtures as working fluids in the power block have the potential to enhance concentrated solar power (CSP) plants and other high-temperature heat source applications. One promising working fluid is the CO2/C6F6 mixture, which enables condensation at 50 °C – a necessity when dry cooling with ambient air. Given the many theoretical studies on topics such as potential, optimized performance, or economic assessments, an experimental validation and a reality-check in a facility of significant size is required to vindicate further research. The experimental campaign was performed on pure CO2 and the CO2/C6F6 mixture in two compositions in a test facility (recuperated transcritical cycle). The long-term test (170h) revealed no operational issues, including no signs of thermal degradation. However, a composition shift - an effect previously regarded as an issue in closed cycles with zeotropic mixtures - affected the conditions at the vapor-liquid-equilibrium in the systems tank but also self-stabilizes the system to remain condensing, even at higher ambient air temperatures. The successful proof-of-concept at cycle temperatures of up to 500 °C – significantly higher than earlier studies on mixtures reported (<300 °C) – justifies further research in this area.
Experimental evaluation of the CO2-based mixture CO2/C6F6 in a recuperated transcritical cycle
Di Marcoberardino, Gioele;
2024-01-01
Abstract
Zeotropic CO2-based mixtures as working fluids in the power block have the potential to enhance concentrated solar power (CSP) plants and other high-temperature heat source applications. One promising working fluid is the CO2/C6F6 mixture, which enables condensation at 50 °C – a necessity when dry cooling with ambient air. Given the many theoretical studies on topics such as potential, optimized performance, or economic assessments, an experimental validation and a reality-check in a facility of significant size is required to vindicate further research. The experimental campaign was performed on pure CO2 and the CO2/C6F6 mixture in two compositions in a test facility (recuperated transcritical cycle). The long-term test (170h) revealed no operational issues, including no signs of thermal degradation. However, a composition shift - an effect previously regarded as an issue in closed cycles with zeotropic mixtures - affected the conditions at the vapor-liquid-equilibrium in the systems tank but also self-stabilizes the system to remain condensing, even at higher ambient air temperatures. The successful proof-of-concept at cycle temperatures of up to 500 °C – significantly higher than earlier studies on mixtures reported (<300 °C) – justifies further research in this area.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0360544224034911-main.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
PUBBLICO - Creative Commons 4.0
Dimensione
5.48 MB
Formato
Adobe PDF
|
5.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


