The present research describes a design of an overhead crane using different materials with a prestress method, which corresponds to an external compression force with the aim of reducing the displacement of the beam due to the external load. This study concerns a bridge crane with a span length of 10 m, with a payload equal to 20,000 N and an estimated fatigue life of 50,000 cycles. Three different materials are studied: steel S355JR, aluminium alloy 6061-T6 and carbon fibre-reinforced polymer (CFRP). These materials are analysed with and without the contribution of the prestress method. In reference to the prestressed steel solution (which has a weight equal to 79% of the non-prestressed configuration), this study designed an aluminium solution that is 50.7% of the weight of the steel one and a composite solution that is always 20.3% of the steel configuration. In combining the methods, i.e., the materials and prestress, compared to the non-prestressed steel solution with a weight evaluated to be 758 kg, the weight of the aluminium configuration is equal to 40% of the traditional one, and the composite value is reduced to 16%, with a weight of 121 kg.

Design of an Overhead Crane in Steel, Aluminium and Composite Material Using the Prestress Method

Solazzi L.;Tomasi I.
2024-01-01

Abstract

The present research describes a design of an overhead crane using different materials with a prestress method, which corresponds to an external compression force with the aim of reducing the displacement of the beam due to the external load. This study concerns a bridge crane with a span length of 10 m, with a payload equal to 20,000 N and an estimated fatigue life of 50,000 cycles. Three different materials are studied: steel S355JR, aluminium alloy 6061-T6 and carbon fibre-reinforced polymer (CFRP). These materials are analysed with and without the contribution of the prestress method. In reference to the prestressed steel solution (which has a weight equal to 79% of the non-prestressed configuration), this study designed an aluminium solution that is 50.7% of the weight of the steel one and a composite solution that is always 20.3% of the steel configuration. In combining the methods, i.e., the materials and prestress, compared to the non-prestressed steel solution with a weight evaluated to be 758 kg, the weight of the aluminium configuration is equal to 40% of the traditional one, and the composite value is reduced to 16%, with a weight of 121 kg.
File in questo prodotto:
File Dimensione Formato  
Design of an Overhead Crane in Steel, Aluminium and Composite Material Using the Prestress Method 2024.pdf

accesso aperto

Tipologia: Full Text
Licenza: Copyright dell'editore
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/618705
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact